Debate Stance Classification

The task of determining which of the two sides (i.e., for or against) an author takes in her post written for a two-sided topic (e.g., "Should abortion be allowed?") in an online debate forum.

A Sample Debate

<table>
<thead>
<tr>
<th>Should abortion be allowed?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women should have the ability to choose what they do with their bodies. The government should not be allowed to force women to continue a pregnancy against their will.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Technically abortion is murder. They are killing the baby without a justified motive. Simply because having a baby would be an inconvenience is the same as killing your parents simply because their existence would be inconvenient.

Aim

Aim: to improve the classification of a post by exploiting information from other posts that are likely to have the same stance during testing.

\[P_1 = \text{Pro-abortion} \]

What will you do if a woman's life is in danger while she's pregnant?

\[P_2 = \text{Anti-abortion} \]

Method 1: Using same-author information (M)

To classify a test post \(p \):

\[\text{Find the set of test posts} \ S_p \text{ written by the same author as} \ p \]

Create all possible subsets of the test posts in \(S_p \)

For each subset, create one pseudo test instance whose features are computed over \(p \) and all the test posts in the subset

Classify each pseudo test instance separately using a stance classifier

\[\text{Classify} \ p \text{ by summing the signed SVM confidences of the pseudo instances} \]

Potential weakness of \(M_1 \): Not enough combinations when an author has few posts

Method 2: Using similar-minded authors (M)

Addresses \(M_1 \)'s weakness by finding similar-minded authors (i.e., other authors whose posts are likely to have the same stance). How?

\[\text{Train a pairwise author-agreement classifier} \]

\[\text{Given a pair of authors} \ (i.e., \text{their posts merged together}), \text{determine whether they agree or disagree.} \]

\[\text{Two types of features for representing an instance} \]

\[\text{Features obtained by taking the difference of the feature vectors corresponding to the two authors} \]

\[\text{Three binary features encoding author interaction information:} \]

\[\text{whether two authors posted in the same debate, same thread, and whether one author replied to the other} \]

\[\text{To classify a test post} \ p \]:

\[\text{Use the classifier to find the} \ k \text{ authors in the test set most similar to the author of} \ p \]

\[\text{Create all possible subsets of the test posts written by} \ p \text{ and its} \ k \text{ nearest authors} \]

\[\text{Create a pseudo test instance from each subset; classify using a stance classifier} \]

\[\text{Classify} \ p \text{ by summing the signed SVM confidences of the pseudo instances} \]

Results

<table>
<thead>
<tr>
<th>System</th>
<th>ABO</th>
<th>GAY</th>
<th>OBA</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>22.9</td>
<td>18.5</td>
<td>24.1</td>
<td>9.6</td>
</tr>
<tr>
<td>(C_2)</td>
<td>17.6</td>
<td>14.3</td>
<td>19.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>

| Rule 1: If \(C_1 \) can classify a test post \(p \) confidently, then use \(C_2 \)'s prediction. |
| Rule 2: If \(C_1 \) can classify \(p \) confidently, use \(C_2 \)'s prediction. |
| Rule 3: use \(C_2 \)'s prediction. |

Note: The rules favor \(C_2 \) than \(C_1 \) because \(\text{Accuracy}(C_2) > \text{Accuracy}(C_1) \)

Two Baseline Systems

- \(C_1 \): Anand et al.'s (2011) supervised system using n-grams, document statistics, punctuations, syntactic dependencies, and parent post features.

- \(C_1 + AC \): An improved version of Anand et al.'s (2011) approach, obtained by applying author constraints (i.e., posts written by the same author have the same stance) to \(C_1 \) output.

Two Extensions to the Baselines

- Linguistics: induce semantic frame and syntactic dependency-based patterns that aim to capture the meaning of a sentence and use them as features

- Extra-linguistic: improve the classification of a test post by exploiting the information in other test posts that are likely to have the same stance

Frame Semantics for Stance Classification

Kazi Saidul Hasan and Vincent Ng

Human Language Technology Research Institute

University of Texas at Dallas