Unsupervised POS Tagging

- **Goal**: POS-tag an unlabeled corpus given a POS lexicon, subject to the constraints imposed by the lexicon

Common Approach

- Train an HMM (i.e., learn its parameters, \(\theta \), which consists of the tag-transition distributions and the output distributions) to maximize the likelihood of the unlabeled corpus using EM
- **Problem**: Tagging accuracy is sensitive to many factors (e.g., parameter initializations)

Alternative: Goldwater and Griffiths’s (2007) Nonparametric Fully-Bayesian Approach

- Adopts an HMM as the underlying model as before, but:
 1. integrates over all possible parameter values, rather than committing to a particular \(\theta \)
 2. favours the learning of skewed tag-transition and output distributions via the use of a prior, \(P(\theta | w) \)
- Performs inference using Gibbs sampling
- Still makes the usual (unrealistic) assumption that a perfect POS lexicon is available

Our Goals

1. Relax this unrealistic assumption by learning the lexicon **automatically** from a small set of tagged sentences
2. Propose two extensions to G&G’s approach for tagging for morphologically-rich, resource-scarce languages
 - Use **Bengali** as our representative language

Extension 1: Induced Suffix Emission (IS)

Motivation: Suffixes are useful indicators of POS tags

A (somewhat naive) way of exploiting suffixes:

1. Generate a list of induced suffixes from an unlabeled corpus (using Keshava and Pitler’s (2006) algorithm)
2. Create a **suffix-based POS lexicon** by replacing each word in the original (i.e., word-based) POS lexicon, \(W \), with its suffix induced in Step 1
3. Have the HMM emit suffixes rather than words, subject to the constraints in the suffix-based POS lexicon

Potential problem: Over-generalization

Our solution: Adopt a hybrid approach:

- Emit a word if it is in \(W \), otherwise emit its suffix

Extension 2: Discriminative Prediction (DP)

Motivation: We can learn from the POS-tagged sentences, \(L \), how to exploit **contextual information** to tag a word. How?

- Learn three types of probabilities from \(L \):
 1. \(P(t | w_{i-2}, w_{i-1}) \): probability of tag \(t \) following a word bigram
 2. \(P(t | w_{i-1}) \): probability of tag \(t \) following a word
 3. \(P(w_i | t) \): probability of a word having tag \(t \)

- **Apply** the Discriminative Prediction Algorithm:
 - If \(w_i \) is in \(L \), assign \(t_i \) to \(w_i \) with \(P(t_i | w_i) \)
 - Else if \((w_{i-2}, w_{i-1}) \) is in \(L \), assign \(t_i \) to \(w_{i-2}, w_{i-1} \) with \(P(t_i | w_{i-2}, w_{i-1}) \)
 - Else if \(w_{i-1} \) is in \(L \), assign \(t_i \) to \(w_{i-1} \) with \(P(t_i | w_{i-1}) \)
 - Else obtain the tag using the Gibbs sampler

Evaluation

Goal: Evaluate our two extensions to G&G’s tagging model using POS lexicons constructed by three methods

Corpus: Bengali dataset from IJCNLP-08 workshop, which comprises a 50K-token training set & a 30K-token test set

Training set: for constructing POS lexicons

Test set: for evaluating model accuracy

Tagset: IIIT Hyderabad’s POS tagset reduced to 15 tags

Inference: running 5K iterations of the Gibbs sampler; hyperparameters learned by Metropolis-Hastings

Lexicon Construction Methods

- **Lexicon 1**: Includes only the words that appear at least \(d \) times in the test data
- **Lexicon 2**: Includes only the words that appear at least \(d \) times in the training data
- **Lexicon 3**: Includes only the words and their tags that appear in the training data (\(L \))

Results using Lexicon 3

POS tagging models:
- **BHMM (Baseline)**: G&G’s fully-Bayesian tagging model
- **BHMM+IS**: BHMM with the induced suffix extension
- **BHMM+IS+DP**: BHMM with both extensions

Learning curves of the POS tagging models:

Discussions

- Results show that both extensions are useful – BHMM+IS and BHMM+IS+DP outperform BHMM by 8–13% and 12–17%, respectively
- **Major sources of errors**: NN vs. NNP (8.4%), NN vs. JJ (6.9%), VM vs. VAUX (5.9%), VM vs. NN (5.1%)
- **Ambiguous token rate** ranges from 57.7% with 5.1 tags/token (50K) to 61.5% with 8.1 tags/token (5K)
- **Unseen word rate** ranges from 25% (50K) to 50% (5K)
- BHMM+IS also outperforms BHMM using Lexicon 1 and Lexicon 2 by 4–9% and 5–10%, respectively