Artificial Intelligence

Adversarial Search

Vibhav Gogate

The University of Texas at Dallas

Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld
Today

• Adversarial Search
 – Minimax search
 – α-β search
 – Evaluation functions
 – Expectimax
Game Playing State-of-the-Art
Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!
Game Playing State-of-the-Art
Game Playing State-of-the-Art

- **Chess:** IBM’s Deep Blue defeated human world champion Gary Kasparov in a six-game match in **1997**.
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
 - Game 3 and 4
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
 - Game 3 and 4
 - Game 5 and 6: Kasparov wins easily!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
 - Game 3 and 4
 - Game 5 and 6: Kasparov wins easily!

4 million geeks watched the game online!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
 - Game 3, 4 and 5: End in a draw
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
 - Game 3, 4 and 5: End in a draw
 - Game 6: Kasparov plays risky. Has a chance to draw but quits!
Chess: (Deep Blue vs Kasparov 1997)

- Game 1: Kasparov wins, Deep Blue makes a random move!!
- Game 2: Deep Blue wins. Kasparov misses an opportunity
- Game 3, 4 and 5: End in a draw
- Game 6: Kasparov plays risky. Has a chance to draw but quits!

4 million geeks watched the game online!
Game Playing State-of-the-Art
- **Othello**: Human champions refuse to compete against computers, which are too good.
Game Playing State-of-the-Art

- **Othello**: Human champions refuse to compete against computers, which are too good.

- **Go**: Human champions are beginning to be challenged by machines, though the best humans still beat the best machines on the full board. In go, $b > 300$, so need pattern knowledge bases and monte carlo search (UCT)
Game Playing State-of-the-Art

- **Othello**: Human champions refuse to compete against computers, which are too good.

- **Go**: Human champions are beginning to be challenged by machines, though the best humans still beat the best machines on the full board. In go, b > 300, so need pattern knowledge bases and monte carlo search (UCT)

- **Pacman**: unknown
Types of Games

<table>
<thead>
<tr>
<th>perfect information</th>
<th>deterministic</th>
<th>imperfect information</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td>stratego</td>
<td></td>
<td>backgammon, monopoly</td>
</tr>
</tbody>
</table>

Number of Players? 1, 2, …?
Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $S \times P \rightarrow R$

- Solution for a player is a *policy*: $S \rightarrow A$
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!

- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
- After search, can pick move that leads to best node
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!

- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
- After search, can pick move that leads to best node
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!

 - Slight reinterpretation:
 - Each node stores a **value**: the best outcome it can reach
 - This is the maximal outcome of its children (the **max value**)
 - Note that we don’t have path sums as before (utilities at end)
 - After search, can pick move that leads to best node
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result

Minimax search
- A state-space search tree
- Players alternate
- Choose move to position with highest *minimax value* = best achievable utility against best play
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree

MAX (X)
Tic-tac-toe Game Tree

MAX (X)

MIN (O)
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility
Minimax Example

max

min
Minimax Example

max

min

A_1

A_2

A_3

A_{11} A_{12} A_{13} A_{21} A_{22} A_{23} A_{31} A_{32} A_{33}

3 12 8 2 4 6 14 5 2
Minimax Example
Minimax Example

max

min

A_1

A_2

A_3

A_{11} A_{12} A_{13}

A_{21} A_{22} A_{23}

A_{31} A_{32} A_{33}

3 12 8

2 4 6

14 5 2
Minimax Example

max

min

A_1

A_2

A_3

A_{11} A_{12} A_{13}

A_{21} A_{22} A_{23}

A_{31} A_{32} A_{33}

3 12 8 2 4 6 14 5 2
Minimax Example

max

min
Minimax Search

function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 $v \leftarrow -\infty$
 for a, s in Successors(state) do $v \leftarrow \text{Max}(v, \text{Min-Value}(s))$
 return v

function Min-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 $v \leftarrow \infty$
 for a, s in Successors(state) do $v \leftarrow \text{Min}(v, \text{Max-Value}(s))$
 return v
Minimax Properties

- Optimal?
- Time complexity?
- Space complexity?
Minimax Properties

- **Optimal?**
 - Yes, against perfect player. Otherwise, can do even better! Why?

- **Time complexity?**

- **Space complexity?**
Minimax Properties

- Optimal?
 - Yes, against perfect player. Otherwise, can do even better! Why?

- Time complexity?
 - $O(b^m)$

- Space complexity?
Minimax Properties

- **Optimal?**
 - Yes, against perfect player. Otherwise, can do even better! Why?

- **Time complexity?**
 - $O(b^m)$

- **Space complexity?**
 - $O(bm)$
Minimax Properties

- **Optimal?**
 - Yes, against perfect player. Otherwise, can do even better! Why?

- **Time complexity?**
 - $O(b^m)$

- **Space complexity?**
 - $O(bm)$

- **For chess, $b \sim 35, m \sim 100$**
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Do We Need to Evaluate Every Node?
\(\alpha-\beta\) Pruning Example

Progress of search...
\(\alpha - \beta\) Pruning

- **General configuration**
 - \(\alpha\) is the best value that MAX can get at any choice point along the current path
 - If \(n\) becomes worse than \(\alpha\), MAX will avoid it, so can stop considering \(n\)'s other children
 - Define \(\beta\) similarly for MIN

\[\begin{align*}
\alpha & \text{ Player} \\
\text{Opponent} & \vdots \\
\text{Player} & \text{Opponent} \\
\text{Opponent} & \text{n}
\end{align*}\]
Alpha-Beta Pseudocode

inputs: *state*, current game state
\[\alpha \], value of best alternative for MAX on path to *state*
\[\beta \], value of best alternative for MIN on path to *state*

returns: a utility value

function **MAX-VALUE**(state, \(\alpha \), \(\beta \))

if TERMINAL-TEST(state) then
 return UTILITY(state)

\[v \leftarrow -\infty \]

for \(a, s \) in SUCCESSORS(state) do
 \[v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s, \alpha, \beta)) \]
 if \(v \geq \beta \) then return \(v \)
 \[\alpha \leftarrow \text{MAX}(\alpha, v) \]

return \(v \)

function **MIN-VALUE**(state, \(\alpha \), \(\beta \))

if TERMINAL-TEST(state) then
 return UTILITY(state)

\[v \leftarrow +\infty \]

for \(a, s \) in SUCCESSORS(state) do
 \[v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(s, \alpha, \beta)) \]
 if \(v \leq \alpha \) then return \(v \)
 \[\beta \leftarrow \text{MIN}(\beta, v) \]

return \(v \)
Alpha-Beta Pseudocode

inputs: \textit{state}, current game state
\[\alpha, \text{ value of best alternative for MAX on path to state} \]
\[\beta, \text{ value of best alternative for MIN on path to state} \]
returns: \textit{a utility value}

function \textsc{Max-Value}(\textit{state},\alpha,\beta)
if \textsc{Terminal-Test}(\textit{state}) then
\textbf{return} \textsc{Utility}(\textit{state})
\[v \leftarrow -\infty \]
for \textit{a, s} in \textsc{Successors}(\textit{state}) do
\[v \leftarrow \text{MAX}(v, \text{MIN-Value}(s,\alpha,\beta)) \]
if \[v \geq \beta \] then return \textit{v}
\[\alpha \leftarrow \text{MAX}(\alpha, v) \]
\textbf{return} \textit{v}

At max node:
Prune if \[v \geq \beta \];
Update \textit{\alpha}

function \textsc{Min-Value}(\textit{state},\alpha,\beta)
if \textsc{Terminal-Test}(\textit{state}) then
\textbf{return} \textsc{Utility}(\textit{state})
\[v \leftarrow +\infty \]
for \textit{a, s} in \textsc{Successors}(\textit{state}) do
\[v \leftarrow \text{MIN}(v, \text{MAX-Value}(s,\alpha,\beta)) \]
if \[v \leq \alpha \] then return \textit{v}
\[\beta \leftarrow \text{MIN}(\beta, v) \]
\textbf{return} \textit{v}

At min node:
Prune if \[v \leq \alpha \];
Update \textit{\beta}
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if $v \geq \beta$;
- Update α

At min node:
- Prune if $v \leq \alpha$;
- Update β

α is MAX’s best alternative here or above;
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = 3 \)

\(\alpha \) is MAX’ s best alternative here or above
\(\beta \) is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if $v \geq \beta$;
- Update α

At min node:
- Prune if $v \leq \alpha$;
- Update β

α is MAX’s best alternative here or above,
β is MIN’s best alternative here or above.
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = 3$

3
12

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
- Prune if $v \geq \beta$;
- Update α

At min node:
- Prune if $v \leq \alpha$;
- Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = 3$

$\alpha = -\infty$
$\beta = 3$
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if $v \geq \beta$;
- Update α

At min node:
- Prune if $v \leq \alpha$;
- Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = 3$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = 3$

$\alpha = 3$
$\beta = 3$

$\alpha = 3$
$\beta = 3$

$\alpha = 8$
$\beta = 3$

$\alpha = 8$
$\beta = 3$

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
At max node: Prune if $v \geq \beta$; Update α

At min node: Prune if $v \leq \alpha$; Update β

α is MAX’s best alternative here or above

β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v\geq \beta$;
Update α

At min node:
Prune if $v\leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX' s best alternative here or above
β is MIN' s best alternative here or above
At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha \) is MAX’s best alternative here or above
\(\beta \) is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if \(v \geq \beta \);
- Update \(\alpha \)

At min node:
- Prune if \(v \leq \alpha \);
- Update \(\beta \)

\(\alpha \) is MAX's best alternative here or above

\(\beta \) is MIN's best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if \(v \geq \beta \);
- Update \(\alpha \)

At min node:
- Prune if \(v \leq \alpha \);
- Update \(\beta \)

\(\alpha \) is MAX’ s best alternative here or above
\(\beta \) is MIN’ s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha \) is MAX’s best alternative here or above
\(\beta \) is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha \) is MAX’s best alternative here or above
\(\beta \) is MIN’s best alternative here or above
α is MAX's best alternative here or above
β is MIN's best alternative here or above
α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Properties

• This pruning has no effect on final result at the root

• Values of intermediate nodes might be wrong!
 – but, they are bounds

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
 – Time complexity drops to $O(b^{m/2})$
 – Doubles solvable depth!
 – Full search of, e.g. chess, is still hopeless…
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with heuristic eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 decent chess program
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with heuristic eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 decent chess program
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with heuristic eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 decent chess program
Heuristic Evaluation Function

- Function which scores non-terminals

Black to move
White slightly better

White to move
Black winning
Heuristic Evaluation Function

- Function which scores non-terminals

 - Ideal function: returns the utility of the position
Heuristic Evaluation Function

- Function which scores non-terminals

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:
 - e.g. \(f_1(s) = (\text{num white queens} - \text{num black queens}) \), etc.
What features would be good for Pacman?

\[Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

Why do we want to do this for multiplayer games?
Stochastic Single-Player

• What if we don’t know what the result of an action will be? E.g.,
 – In solitaire, shuffle is unknown
 – In minesweeper, mine locations
Stochastic Single-Player

• What if we don’t know what the result of an action will be? E.g.,
 – In solitaire, shuffle is unknown
 – In minesweeper, mine locations

 ▪ Can do **expectimax search**
 ▪ Chance nodes, like actions except the environment controls the action chosen
 ▪ Max nodes as before
 ▪ Chance nodes take average (expectation) of value of children
Maximum Expected Utility

• Why should we average utilities? Why not minimax?

• Principle of maximum expected utility: an agent should choose the action which maximizes its expected utility, given its knowledge
 – General principle for decision making
 – Often taken as the definition of rationality
 – We’ll see this idea over and over in this course!

• Let’s decompress this definition…
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
- Random variable: $T =$ whether there’s traffic
- Outcomes: T in \{none, light, heavy\}
- Distribution: $P(T=\text{none}) = 0.25$, $P(T=\text{light}) = 0.55$, $P(T=\text{heavy}) = 0.20$

Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
- $P(T=\text{heavy}) = 0.20$, $P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60$
- We’ll talk about methods for reasoning and updating probabilities later
Uncertainty Everywhere

• Not just for games of chance!
 – I’m sick: will I sneeze this minute?
 – Email contains “FREE!”: is it spam?
 – Tooth hurts: have cavity?
 – 60 min enough to get to the airport?
 – Robot rotated wheel three times, how far did it advance?
 – Safe to cross street? (Look both ways!)

• Sources of uncertainty in random variables:
 – Inherently random process (dice, etc)
 – Insufficient or weak evidence
 – Ignorance of underlying processes
 – Unmodeled variables
 – The world’s just noisy – it doesn’t behave according to plan!
Reminder: Expectations

- We can define function \(f(X) \) of a random variable \(X \)

- The expected value of a function is its average value, weighted by the probability distribution over inputs

- Example: How long to get to the airport?
 - Length of driving time as a function of traffic:
 - \(L(\text{none}) = 20, L(\text{light}) = 30, L(\text{heavy}) = 60 \)
 - What is my expected driving time?
 - Notation: \(E_{P(T)}[L(T)] \)
 - Remember, \(P(T) = \{\text{none: 0.25, light: 0.5, heavy: 0.25}\} \)

\[
E[L(T)] = L(\text{none}) \times P(\text{none}) + L(\text{light}) \times P(\text{light}) + L(\text{heavy}) \times P(\text{heavy})
\]

\[
E[L(T)] = (20 \times 0.25) + (30 \times 0.5) + (60 \times 0.25) = 35
\]
Review: Expectations

- Real valued functions of random variables:
 \[f : X \rightarrow R \]

- Expectation of a function of a random variable
 \[E_{P(X)}[f(X)] = \sum_x f(x)P(x) \]

- Example: Expected value of a fair die roll

<table>
<thead>
<tr>
<th>(X)</th>
<th>P</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5
\]
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences.

- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent’s goals
 - Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)

- In general, we hard-wire utilities and let actions emerge (why don’t we let agents decide their own utilities?)

- More on utilities soon...
Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```plaintext
if state is a Max node then
    return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
    return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
    return average of ExpectiMinimax-Value of Successors(state)
```
Expectimax Search Trees

• What if we don’t know what the result of an action will be? E.g.,
 – In solitaire, next card is unknown
 – In minesweeper, mine locations
 – In pacman, the ghosts act randomly

 ▪ Can do **expectimax search**
 ▪ Chance nodes, like min nodes, except the outcome is uncertain
 ▪ Calculate **expected utilities**
 ▪ Max nodes as in minimax search
 ▪ Chance nodes take average (expectation) of value of children

Later, we’ll learn how to formalize the underlying problem as a **Markov Decision Process**
Expectimax Pruning? (Optional)

- Not easy
 - exact: need bounds on possible values
 - approximate: sample high-probability branches