Unsupervised Learning: Clustering

Vibhav Gogate
The University of Texas at Dallas

Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer
Machine Learning

Supervised Learning
- Parametric
 - Gaussians
 - Learned in closed form
 - Linear Functions
 - 1. Learned in closed form
 - 2. Using gradient descent
- Non-parametric
 - Y Discrete
 - Decision Trees
 - Greedy search; pruning
 - Probability of class | features
 - 1. Learn P(Y), P(X|Y); apply Bayes
 - 2. Learn P(Y|X) w/ gradient descent
 - Non-probabilistic
 - Linear: perceptron gradient descent
 - Nonlinear: neural net: backprop
 - Support vector machines

Unsupervised Learning
- Parametric
 - Y Continuous
- Non-parametric
 - Y Discrete
Overview of Learning

Type of Supervision
(eg, Experience, Feedback)

<table>
<thead>
<tr>
<th>What is Being Learned?</th>
<th>Labeled Examples</th>
<th>Reward</th>
<th>Nothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Function</td>
<td>Classification</td>
<td></td>
<td>Clustering</td>
</tr>
<tr>
<td>Continuous Function</td>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>Apprenticeship Learning</td>
<td>Reinforcement Learning</td>
<td></td>
</tr>
</tbody>
</table>
Clustering

Clustering systems:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
 - Group emails or search results
 - Customer shopping patterns
 - Program executions (intrusion detection)
- Useful when don’t know what you’re looking for
- But: often get gibberish
Clustering

• Basic idea: group together similar instances
• Example: 2D point patterns

What could “similar” mean?

– One option: small (squared) Euclidean distance

\[
\text{dist}(x, y) = (x - y)^T (x - y) = \sum_i (x_i - y_i)^2
\]
Outline

• K-means & Agglomerative Clustering
• Agglomerative Clustering
• Expectation Maximization (EM)
K-Means: Algorithm

• An iterative clustering algorithm
 – Pick K random points as cluster centers (means)
 – Alternate:
 • Assign data instances to closest cluster center
 • Change the cluster center to the average of its assigned points
 – Stop when no points’ assignments change
K-means clustering: Example

- Pick K random points as cluster centers (means)
K-means clustering: Example

Iterative Step 1
- Assign data instances to closest cluster center
K-means clustering: Example

Iterative Step 2
• Change the cluster center to the average of the assigned points
K-means clustering: Example

- Repeat until convergence
K-means clustering: Example
K-means clustering: Example
K-means clustering: Example
Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.
Example: K-Means for Segmentation

K=2 K=3 Original
Example: K-Means for Segmentation

K=2

K=3

K=10

Original

4%

8%

17%
K-Means as Optimization

• Consider the total distance to the means:

\[\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]

• Two stages each iteration:
 – Update assignments: fix means \(c \), change assignments \(a \)
 – Update means: fix assignments \(a \), change means \(c \)

• Co-ordinate Gradient Descent

• Will it converge?
 – Yes!, if you can argue that each update can’t increase \(\Phi \)
Phase I: Update Assignments

• For each point, re-assign to closest mean:

 \[a_i = \arg \min_k \text{dist}(x_i, c_k) \]

• Can only decrease total distance phi!

 \[\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]
Phase II: Update Means

• Move each mean to the average of its assigned points:

\[c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i \]

• Also can only decrease total distance… (Why?)

• Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean
Initialization

- **K-means is non-deterministic**
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics
K-Means Getting Stuck

A local optimum:
K-Means Questions

• Will K-means converge?
 – To a global optimum?

• Will it always find the true patterns in the data?
 – If the patterns are very very clear?

• Runtime?

• Do people ever use it?

• How many clusters to pick?
Agglomerative Clustering

• Agglomerative clustering:
 – First merge very similar instances
 – Incrementally build larger clusters out of smaller clusters

• Algorithm:
 – Maintain a set of clusters
 – Initially, each instance in its own cluster
 – Repeat:
 • Pick the two closest clusters
 • Merge them into a new cluster
 • Stop when there’s only one cluster left

• Produces not one clustering, but a family of clusterings represented by a **dendrogram**
Agglomerative Clustering

- How should we define “closest” for clusters with multiple elements?
Agglomerative Clustering

• How should we define “closest” for clusters with multiple elements?

• Many options:
 – Closest pair
 (single-link clustering)
 – Farthest pair
 (complete-link clustering)
 – Average of all pairs
 – Ward’s method
 (min variance, like k-means)
 • Find pair of clusters that leads to minimum increase in total within cluster distance after merging

• Different choices create different clustering behaviors
Clustering Behavior

Average Farthest Nearest

Mouse tumor data from [Hastie]
Agglomerative Clustering Questions

• Will agglomerative clustering converge?
 – To a global optimum?

• Will it always find the true patterns in the data?

• Do people ever use it?

• How many clusters to pick?
EM: Soft Clustering

• Clustering typically assumes that each instance is given a “hard” assignment to exactly one cluster.
• Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
 – Problematic because data points that lie roughly midway between cluster centers are assigned to one cluster
• *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
Probabilistic Clustering

- Try a probabilistic model!
 - allows overlaps, clusters of different size, etc.
- Can tell a *generative story* for data
 - \(P(X|Z) P(Z) \)
- **Challenge:** we need to estimate model parameters without labeled Zs
Finite Mixture Models

• Given a dataset: \(D = \{x_1, \ldots, x_N\} \)

• Mixture model: \(\Theta = \{\alpha_1, \ldots, \alpha_K, \theta_1, \ldots, \theta_K\} \)

\[
p(x|\Theta) = \sum_{k=1}^{K} \alpha_k p_k(x|z_k, \theta_k)
\]

The \(p_k(x|z_k, \theta_k) \) are mixture components, \(1 \leq k \leq K \)

\(z = (z_1, \ldots, z_K) \) is a vector of \(K \) binary indicator variables

Note: only one of them equals 1 at any given point. Each point is assumed to be generated from exactly one mixture component!

Mixture Weights. \(\alpha_k = p(z_k) \)

\[
\sum_{k=1}^{K} \alpha_k = 1
\]
Finite Mixture Model: Probabilistic View

the “membership weight” of data point \mathbf{x}_i in cluster k, given parameters Θ

\[w_{ik} = p(z_{ik} = 1 | \mathbf{x}_i, \Theta) = \frac{p_k(\mathbf{x}_i | z_k, \theta_k) \cdot \alpha_k}{\sum_{m=1}^{K} p_m(\mathbf{x}_i | z_m, \theta_m) \cdot \alpha_m} \]

• The membership weight express our uncertainty about which of the “K” components generated the vector \mathbf{x}_i.
Gaussian Mixture Models (GMMs)

We can define a GMM by making each “k-th” component a Gaussian density with parameters:

$$p_k(x|\theta_k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^t \Sigma_k^{-1}(x-\mu_k)}$$

- We can define a GMM by making each “k-th” component a Gaussian density with parameters:

$$\theta_k = \{\mu_k, \Sigma_k\}$$

Question: How to learn these parameters from data?
Expectation Maximization
EM algorithm: Key Idea

• Start with random parameters
• Find a class for each example (E-step)
 – Since we are using probabilistic classification, each example will be given a vector of probabilities
• Now we have a supervised learning problem. Estimate the parameters of the model using the maximum likelihood method (M-step)
• Iterate between the E-step and M-step until convergence
EM: Two Easy Steps

• E-step: (Yields a N x K matrix)
 – Compute w_{ik} for all data points indexed by “i” and all mixture components indexed by “k.”

• M-step:
 – Use the membership weights and data to compute the new parameters

\[
N_k = \sum_{i=1}^{N} w_{ik} \quad \alpha_k^{new} = \frac{N_k}{N}
\]

\[
\mu_k^{new} = \left(\frac{1}{N_k} \right) \sum_{i=1}^{N} w_{ik} \cdot x_i
\]

\[
\Sigma_k^{new} = \left(\frac{1}{N_k} \right) \sum_{i=1}^{N} w_{ik} \cdot (x_i - \mu_k^{new})(x_i - \mu_k^{new})^t
\]
Gaussian Mixture Example: Start
After first iteration
After 2nd iteration
After 3rd iteration
After 4th iteration
After 5th iteration
After 6th iteration
After 20th iteration
Properties of EM

• EM converges to a local minima
 – This is because each iteration improves the log-likelihood
 – Proof same as K-means
 • E-step can never decrease likelihood
 • M-step can never decrease likelihood

• If we make hard assignments instead of soft ones. Algorithm is equivalent to K-means!
What you should know

• K-means for clustering:
 – algorithm
 – converges because it’s coordinate ascent

• Know what agglomerative clustering is

• EM for mixture of Gaussians:

• Remember, E.M. can get stuck in local minima,
 – And empirically it **DOES!**