Markov Logic: Representation
Overview

- Statistical relational learning
- Markov logic
- Basic inference
- Basic learning
Statistical Relational Learning

Goals:

- Combine (subsets of) logic and probability into a single language
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

Plethora of Approaches

- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others!
Key Dimensions

- **Logical language**
 First-order logic, Horn clauses, frame systems

- **Probabilistic language**
 Bayes nets, Markov nets, PCFGs

- **Type of learning**
 - Generative / Discriminative
 - Structure / Parameters
 - Knowledge-rich / Knowledge-poor

- **Type of inference**
 - MAP / Marginal
 - Full grounding / Partial grounding / Lifted
First-Order Logic

- Constants, variables, functions, predicates
 E.g.: Anna, x, MotherOf(x), Friends(x, y)

- **Literal**: Predicate or its negation

- **Clause**: Disjunction of literals

- **Grounding**: Replace all variables by constants
 E.g.: Friends (Anna, Bob)

- **World** (model, interpretation):
 Assignment of truth values to all ground predicates
Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.
Example: Friends & Smokers

\begin{align*}
\forall x \ Smokes(x) & \Rightarrow Cancer(x) \\
\forall x, y \ Friends(x, y) & \Rightarrow (Smokes(x) \iff Smokes(y))
\end{align*}
Inference in First-Order Logic

- Traditionally done by theorem proving (e.g.: Prolog)
- Propositionalization followed by model checking turns out to be faster (often a lot)
- **Propositionalization:** Create all ground atoms and clauses
- **Model checking:** Satisfiability testing
- Two main approaches:
 - **Backtracking** (e.g.: DPLL)
 - **Stochastic local search** (e.g.: WalkSAT)
Satisfiability

- **Input:** Set of clauses
 (Convert KB to conjunctive normal form (CNF))
- **Output:** Truth assignment that satisfies all clauses, or failure
- The paradigmatic NP-complete problem
- **Solution:** Search
- **Key point:**
 Most SAT problems are actually easy
- **Hard region:** Narrow range of
 #Clauses / #Variables
Backtracking

- Assign truth values by depth-first search
- Assigning a variable deletes false literals and satisfied clauses
- Empty set of clauses: Success
- Empty clause: Failure
- Additional improvements:
 - **Unit propagation** (unit clause forces truth value)
 - **Pure literals** (same truth value everywhere)
The DPLL Algorithm

if CNF is empty then
 return $true$
else if CNF contains an empty clause then
 return $false$
else if CNF contains a pure literal x then
 return $DPLL(CNF(x))$
else if CNF contains a unit clause $\{u\}$ then
 return $DPLL(CNF(u))$
else
 choose a variable x that appears in CNF
 if $DPLL(CNF(x)) = true$ then return $true$
 else return $DPLL(CNF(\neg x))$
Stochastic Local Search

- Uses complete assignments instead of partial
- Start with random state
- Flip variables in unsatisfied clauses
- Hill-climbing: Minimize # unsatisfied clauses
- Avoid local minima: Random flips
- Multiple restarts
The WalkSAT Algorithm

```plaintext
for i ← 1 to max-tries do
    solution = random truth assignment
    for j ← 1 to max-flips do
        if all clauses satisfied then
            return solution
        c ← random unsatisfied clause
        with probability p
        flip a random variable in c
    else
        flip variable in c that maximizes number of satisfied clauses
return failure
```
Markov Networks

- **Undirected** graphical models

- Potential functions defined over cliques

\[
P(x) = \frac{1}{Z} \prod_c \Phi_c(x_c)
\]

\[
Z = \sum_x \prod_c \Phi_c(x_c)
\]

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cancer</th>
<th>(\Phi(S,C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>4.5</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>4.5</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>2.7</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Markov Networks

- **Undirected** graphical models

```
Smoking     Cancer
          Asthma     Cough
```

- Log-linear model:

\[
P(x) = \frac{1}{Z} \exp \left(\sum_i w_i f_i(x) \right)
\]

\[
f_1(\text{Smoking, Cancer}) = \begin{cases}
1 & \text{if } \neg \text{Smoking } \lor \text{Cancer} \\
0 & \text{otherwise}
\end{cases}
\]

\[
w_1 = 1.5
\]
Hammersley-Clifford Theorem

If Distribution is strictly positive ($P(x) > 0$)
And Graph encodes conditional independences
Then Distribution is product of potentials over cliques of graph

Inverse is also true.
(“Markov network = Gibbs distribution”)
Markov Nets vs. Bayes Nets

<table>
<thead>
<tr>
<th>Property</th>
<th>Markov Nets</th>
<th>Bayes Nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Prod. potentials</td>
<td>Prod. potentials</td>
</tr>
<tr>
<td>Potentials</td>
<td>Arbitrary</td>
<td>Cond. probabilities</td>
</tr>
<tr>
<td>Cycles</td>
<td>Allowed</td>
<td>Forbidden</td>
</tr>
<tr>
<td>Partition func.</td>
<td>$Z = ?$</td>
<td>$Z = 1$</td>
</tr>
<tr>
<td>Indep. check</td>
<td>Graph separation</td>
<td>D-separation</td>
</tr>
<tr>
<td>Indep. props.</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Inference</td>
<td>MCMC, BP, etc.</td>
<td>Convert to Markov</td>
</tr>
</tbody>
</table>
Inference in Markov Networks

- Computing probabilities
 - Markov chain Monte Carlo
 - Belief propagation
- MAP inference
Markov Logic

- **Logical language:** First-order logic
- **Probabilistic language:** Markov networks
 - **Syntax:** First-order formulas with weights
 - **Semantics:** Templates for Markov net features
- **Learning:**
 - **Parameters:** Generative or discriminative
 - **Structure:** ILP with arbitrary clauses and MAP score
- **Inference:**
 - **MAP:** Weighted satisfiability
 - **Marginal:** MCMC with moves proposed by SAT solver
 - Partial grounding + Lazy inference / Lifted inference
Markov Logic: Intuition

- A logical KB is a set of **hard constraints** on the set of possible worlds
- Let’s make them **soft constraints**: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a **weight** (Higher weight \Rightarrow Stronger constraint)

$P(\text{world}) \propto \exp\left(\sum \text{weights of formulas it satisfies}\right)$
A Markov Logic Network (MLN) is a set of pairs \((F, w)\) where
- \(F\) is a formula in first-order logic
- \(w\) is a real number

Together with a set of constants, it defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula \(F\) in the MLN, with the corresponding weight \(w\)
Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.
Example: Friends & Smokers

\[\forall x \ Smokes(x) \Rightarrow Cancer(x) \]
\[\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \leftrightarrow Smokes(y)) \]
Example: Friends & Smokers

<table>
<thead>
<tr>
<th>1.5</th>
<th>$\forall x \ Smokes(x) \Rightarrow Cancer(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \leftrightarrow Smokes(y))$</td>
</tr>
</tbody>
</table>
Example: Friends & Smokers

<table>
<thead>
<tr>
<th></th>
<th>1.5</th>
<th>(\forall x \ Smokes(x) \Rightarrow Cancer(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1</td>
<td>(\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \iff Smokes(y)))</td>
</tr>
</tbody>
</table>

Two constants: **Anna** (A) and **Bob** (B)
Example: Friends & Smokers

| 1.5 | $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ |
| 1.1 | $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$ |

Two constants: **Anna** (A) and **Bob** (B)
Example: Friends & Smokers

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: Anna (A) and Bob (B)
Example: Friends & Smokers

1.5 \(\forall x \text{ Smokes}(x) \Rightarrow \text{Cancer}(x) \)
1.1 \(\forall x, y \text{ Friends}(x, y) \Rightarrow (\text{Smokes}(x) \equiv \text{Smokes}(y)) \)

Two constants: Anna (A) and Bob (B)
Example: Friends & Smokers

1.5 \(\forall x \ Smokes(x) \implies Cancer(x) \)

1.1 \(\forall x, y \ Friends(x, y) \implies (Smokes(x) \iff Smokes(y)) \)

Two constants: Anna (A) and Bob (B)
Markov Logic Networks

- **MLN** is **template** for ground Markov nets
- Probability of a world x:
 \[
P(x) = \frac{1}{Z} \exp \left(\sum_i w_i n_i(x) \right)
 \]

 - Weight of formula i
 - No. of true groundings of formula i in x
- **Typed** variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains
Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

- Obtained by making all predicates zero-arity

- Markov logic allows objects to be interdependent (non-i.i.d.)
Relation to First-Order Logic

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights \Rightarrow
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas
MAP Inference

- **Problem**: Find most likely state of world given evidence

\[\arg \max_y P(y | x) \]

- Query
- Evidence
MAP Inference

- **Problem**: Find most likely state of world given evidence

\[
\arg \max_y \frac{1}{Z_x} \exp \left(\sum_i w_i n_i(x, y) \right)
\]
MAP Inference

Problem: Find most likely state of world given evidence

\[\arg \max_y \sum_i w_i n_i(x, y) \]
MAP Inference

- **Problem**: Find most likely state of world given evidence

\[
\arg \max_y \sum_i w_i n_i(x, y)
\]

- This is just the weighted MaxSAT problem
- Use weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997]
The MaxWalkSAT Algorithm

```plaintext
for i ← 1 to max-tries do
    solution = random truth assignment
    for j ← 1 to max-flips do
        if ∑ weights(sat. clauses) > threshold then
            return solution
        c ← random unsatisfied clause
        with probability p
        flip a random variable in c
    else
        flip variable in c that maximizes ∑ weights(sat. clauses)
return failure, best solution found
```
Computing Probabilities

- $P(\text{Formula} | \text{MLN,C}) = \ ?$
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- $P(\text{Formula}_1 | \text{Formula}_2, \text{MLN,C}) = \ ?$
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives
Learning

- Data is a relational database
- For now: Closed world assumption (if not: EM)
- Learning parameters (weights)
 - Similar to learning weights for Markov networks
- Learning structure (formulas)
 - A form of inductive logic programming
 - Also related to learning features for Markov nets
Weight Learning

- Parameter tying: Groundings of same clause
 \[\frac{\partial}{\partial w_i} \log P_w(x) = n_i(x) - E_w[n_i(x)] \]

- Generative learning: Pseudo-likelihood
- Discriminative learning: Cond. likelihood, use MaxWalkSAT for inference
Alchemy

Open-source software including:

- Full first-order logic syntax
- Inference (MAP and conditional probabilities)
- Weight learning (generative and discriminative)
- Structure learning
- Programming language features

alchemy.cs.washington.edu