Task: Chinese Overt Pronoun Resolution (PR)

Find an antecedent for each anaphoric overt pronoun in a Chinese text.

An Illustrative Example

Mary told John that she liked him a lot.

Resolve pronouns **she** and **him** to their antecedents, which are **Mary** and **John**, respectively.

Why is it more Challenging than English PR?

- Less coreference-annotated data available for training resolvers in Chinese than in English.
- Lack of publicly-available linguistic resources in Chinese that are essential for overt PR, such as Gender and Number wordlists.

Goal: Improve Chinese PR

Address the two challenges above by exploiting
- English coreference-annotated data, and
- English Gender and Number wordlists in addition to Chinese coreference-annotated data.

How?

- **Idea 1:** Feature augmentation
 - Machine-translate Chinese text to English text
 - Align the Chinese and English mentions
 - Train a Chinese pronoun resolver on Chinese data, where instances are represented by features derived from Chinese mentions and those derived from the mapped English mentions.
 - **Pros:** use Chinese training data; use English wordlists
 - **Cons:** does not use English training data

- **Idea 2:** Annotation projection
 - Train an English pronoun resolver on English data
 - Apply resolver on English text machine-translated from Chinese
 - **Pros:** use English training data; use English wordlists
 - **Cons:** does not use Chinese training data

- **Idea 3:** Our bilingual approach
 - Combine ideas 1 and 2 via an ensemble approach

Related Work

- All existing approaches to Chinese overt PR or coreference resolution are **monolingual**, training models on either
 - Chinese data (e.g., Luo and Zitouni (2005); Wang and Ngai (2006); Kong and Zhou (2012); Kong and Ng (2013)); or
 - **English** data (by adopting Idea 2) (Rahman and Ng, 2012), but none of them exploits resources in both languages.

Bilingual Approach: Implementation Details

Document preprocessing

Step 1: Machine-translate each training and test document from Chinese to English using Google Translate.

Mary 告诉 John 她非常喜欢他.

Step 2: Align the words in each pair of sentences using BerkeleyAligner.

Mary told John that she liked him a lot.

Step 3: Align Chinese mentions to English mentions heuristically.

[Mary 告诉 John 她]非常喜欢[他].

Classifier training (3 classifiers, all mention-pair models)

- **English pronoun resolver (PR)**
 - Trained on English training data
 - Training instances created from English anaphoric pronouns
 - Employs the English features from Björkelund and Farkas (2012)
- **Chinese pronoun resolver (PR)**
 - Trained on Chinese training data
 - Training instances created from Chinese anaphoric pronouns
 - Employs the Chinese features from Björkelund and Farkas (2012)
- **Mixed pronoun resolver (PR)**
 - Trained on Chinese training data and translated English data
 - Training instances created from the subset of Chinese anaphoric pronouns that have been aligned to some English pronouns
 - Employs the features used in both PR and PR

Resolution methods

- **Method 1**
 - Resolve pronoun \(m_p\) to the closest preceding mention \(m_h\) whose co-reference probability \(PR\) is at least 0.5.
 - If \(m_p\) is not aligned to any English pronoun or \(PR\) does not resolve \(m_p\), apply \(PR\) to resolve \(m_h\).
- **Method 2**
 - Same as method 1 except that \(PR\) is replaced with \(PR\).
- **Method 3**
 - Same as method 1 except that the co-reference probability between \(m_h\) and \(m_p\) is computed as the unweighted average of the probabilities returned by \(PR\), \(PR\), and \(PR\) (which we will refer to as \(PR\), \(PR\), and \(PR\), respectively).
- **Method 4**
 - Resolve \(m_h\) to the closest preceding mention \(m_h\) if at least one of four conditions is satisfied: (1) \(PR > PR\); (2) \(PR > PR\); (3) \(PR > PR\); and

\[
Pr_{new} = \frac{P_{PR} + P_{PR} w_s(P_s)^{\gamma} + P_{PR} w_m(P_m)^{\gamma}}{1 + w_s(P_s)^{\gamma} + w_m(P_m)^{\gamma}}
\]

Evaluation

Corpus: CoNLL-2012 shared task data

- **Training set:** 1,391 Chinese docs (750K words); 1,940 English docs (1.3M words)
- **Development set:** 172 Chinese docs (110K words)
- **Test set:** 166 Chinese docs (90K words)

Baseline systems

- **Monolingual approach**
 - Supervised mention-pair model trained only on Chinese data
 - Best Chinese coreference system in the CoNLL-2012 shared task
 - Hybrid model combining rules and machine learning (Chen and Ng, 2012)
 - Rahman and Ng’s (2012) approach
 - Annotation projection approach (method 1 without using \(PR\) as backoff)

Evaluation metrics

- **Recall** (R), **Precision** (P), and **F-score** (F) on resolving anaphoric pronouns
- **Accuracies:** A is the percentage of anaphoric pronouns correctly resolved; A is the percentage of non-anaphoric pronouns not resolved; A is overall accuracy.

Results on CoNLL-2012 shared task test set

<table>
<thead>
<tr>
<th>Resolution Method</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolingual Approach</td>
<td>71.7</td>
<td>65.3</td>
<td>68.4</td>
</tr>
<tr>
<td>Monolingual Approach (Best-first)</td>
<td>72.0</td>
<td>65.6</td>
<td>68.7</td>
</tr>
<tr>
<td>Best Shared Task System</td>
<td>63.8</td>
<td>67.5</td>
<td>65.6</td>
</tr>
<tr>
<td>Rahman and Ng’s (2012) Approach</td>
<td>64.3</td>
<td>65.2</td>
<td>64.7</td>
</tr>
<tr>
<td>Method 1</td>
<td>65.6</td>
<td>64.4</td>
<td>65.0</td>
</tr>
<tr>
<td>Method 2</td>
<td>73.0</td>
<td>65.1</td>
<td>68.8</td>
</tr>
<tr>
<td>Method 3</td>
<td>71.5</td>
<td>70.5</td>
<td>71.0</td>
</tr>
<tr>
<td>Method 4</td>
<td>71.1</td>
<td>71.5</td>
<td>71.3</td>
</tr>
</tbody>
</table>

Methods 3 and 4 significantly outperform the baselines w.r.t. both F-score and accuracy.

Impact of Machine Translation Quality

S-fold cross-validation results on a 400-document parallel corpus

<table>
<thead>
<tr>
<th>Resolution Method</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Translation (MT)</td>
<td>63.0</td>
<td>62.7</td>
<td>62.8</td>
</tr>
<tr>
<td>Human Translation (HT)</td>
<td>63.0</td>
<td>62.7</td>
<td>62.8</td>
</tr>
<tr>
<td>Monolingual Approach (Closest-first)</td>
<td>62.3</td>
<td>62.0</td>
<td>62.2</td>
</tr>
<tr>
<td>Monolingual Approach (Best-first)</td>
<td>55.2</td>
<td>65.8</td>
<td>60.1</td>
</tr>
<tr>
<td>Best Shared Task System</td>
<td>54.7</td>
<td>58.1</td>
<td>56.4</td>
</tr>
<tr>
<td>Rahman and Ng’s (2012) Approach</td>
<td>55.6</td>
<td>57.4</td>
<td>56.5</td>
</tr>
<tr>
<td>Method 1</td>
<td>65.6</td>
<td>69.8</td>
<td>62.5</td>
</tr>
<tr>
<td>Method 2</td>
<td>66.5</td>
<td>69.8</td>
<td>62.5</td>
</tr>
<tr>
<td>Method 3</td>
<td>67.1</td>
<td>66.9</td>
<td>64.2</td>
</tr>
<tr>
<td>Method 4</td>
<td>63.8</td>
<td>65.3</td>
<td>64.5</td>
</tr>
</tbody>
</table>

When MT is replaced with HT, the F-scores of all four methods increase significantly by 0.9-1.5%, but their relative performance does not change.