Modeling Thesis Clarity in Student Essays

Isaac Persing and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Automated Essay Grading

• Important educational application of NLP

• Related research on essay scoring
 – Grammatical errors (Leacock et al., 2010)
 – Coherence (Miltsakaki and Kukich, 2004)
 – Relevance to prompt (Higgins et al., 2004)
 – Organization (Persing et al., 2010)

➢ Little work done on modeling *thesis clarity*
What is Thesis Clarity?

• refers to how clearly an author explains the thesis of her essay
 – the position she argues for with respect to the topic on which the essay is written
What is Thesis Clarity?

- refers to *how clearly* an author explains the *thesis* of her essay
 - the position she argues for with respect to the topic on which the essay is written

 overall message of the *entire* essay
 - unbound from the concept of thesis sentences
Goals

• Develop a model for scoring the thesis clarity of student essays
Goals

• Develop a model for scoring the thesis clarity of student essays
• Develop a system for determining why an essay receives its thesis clarity score
Goals

• Develop a model for scoring the thesis clarity of student essays
• Develop a system for determining why an essay receives its thesis clarity score
 – Provides more informative feedback to a student
Goals

• Develop a model for scoring the thesis clarity of student essays
• Develop a system for determining why an essay receives its thesis clarity score
 – Provides more informative feedback to a student
 – Given a predefined set of common errors that impact thesis clarify, determine which of these errors occur in a given essay
Plan for the Talk

- Corpus and Annotations
- Model for identifying thesis clarity errors
- Model for scoring thesis clarity
- Evaluation
Plan for the Talk

Corpus and Annotations

• Model for identifying thesis clarity errors
• Model for scoring thesis clarity
• Evaluation
Selecting a Corpus

• International Corpus of Learner English (ICLE)
 – 4.5 million words in more than 6000 essays
 – Written by university undergraduates who are learners of English as a foreign language
 – Mostly (91%) argumentative writing topics

• Essays selected for annotation
 – 830 argumentative essays from 13 prompts
 – 2 types of annotation: thesis clarity score and errors
Thesis Clarity Scoring Rubric

4 – essay presents a very clear thesis and requires little or no clarification

3 – essay presents a moderately clear thesis but could benefit from some clarification

2 – essay presents an unclear thesis and would greatly benefit from further clarification

1 – essay presents no thesis of any kind and it is difficult to see what the thesis could be

• Half-point increments (i.e., 1.5, 2.5, 3.5) allowed
Inter-Annotation Agreement

• 100 of 830 essays scored by both annotators
Inter-Annotator Agreement

• 100 of 830 essays scored by both annotators

• Perfect agreement on 36% of essays
• Scores within 0.5 point on 62% of essays
• Scores within 1.0 point on 85% of essays
5 Types of Thesis Clarity Errors
5 Types of Thesis Clarity Errors

• **Confusing Phrasing** (18%)
 – Thesis is phrased oddly, making it hard to understand writer’s point
5 Types of Thesis Clarity Errors

• **Confusing Phrasing** (18%)
 – Thesis is phrased oddly, making it hard to understand writer’s point

• **Incomplete Prompt Response** (15%)
 – Thesis seems to leave part of a multi-part prompt unaddressed
5 Types of Thesis Clarity Errors

• **Confusing Phrasing** (18%)
 – Thesis is phrased oddly, making it hard to understand writer’s point

• **Incomplete Prompt Response** (15%)
 – Thesis seems to leave part of a multi-part prompt unaddressed

• **Relevance to Prompt** (17%)
 – The apparent thesis’s weak relation to the prompt causes confusion
5 Types of Thesis Clarity Errors

• Confusing Phrasing (18%)
 – Thesis is phrased oddly, making it hard to understand writer’s point

• Incomplete Prompt Response (15%)
 – Thesis seems to leave part of a multi-part prompt unaddressed

• Relevance to Prompt (17%)
 – The apparent thesis’s weak relation to the prompt causes confusion

• Missing Details (6%)
 – Thesis omits important detail needed to understand writer’s point
5 Types of Thesis Clarity Errors

• **Confusing Phrasing** (18%)
 – Thesis is phrased oddly, making it hard to understand writer’s point

• **Incomplete Prompt Response** (15%)
 – Thesis seems to leave part of a multi-part prompt unaddressed

• **Relevance to Prompt** (17%)
 – The apparent thesis’s weak relation to the prompt causes confusion

• **Missing Details** (6%)
 – Thesis omits important detail needed to understand writer’s point

• **Writer Position** (5%)
 – Thesis describes a position on the topic without making it clear that this is the position the writer supports
Inter-Annotator Agreement

- 100 of 830 essays scored by 2 annotators
- Compute Cohen’s Kappa on each error type from the two sets of annotations
Inter-Annotator Agreement

• 100 of 830 essays scored by 2 annotators
• Compute Cohen’s Kappa on each error type from the two sets of annotations
• Average Kappa: 0.75
Plan for the Talk

✓ Corpus andAnnotations

➢ Model for identifying thesis clarity errors
 • Model for scoring thesis clarity
 • Evaluation
Error Identification

• **Goal**: assign zero or more of the five error types to each essay
Error Identification

• **Goal:** assign zero or more of the five error types to each essay

• **Approach:**
 – recast problem as a set of 5 binary classification tasks
 • train five binary classifiers, each of which predicts whether a particular type of error exists in an essay
Learning the Binary Classification Tasks

• Goal: train a classifier c_i for identifying error type e_i

• Training data creation
 – create one training instance from each training essay
 – label the instance as
 • positive if essay has e_i as one of its labels
 • negative otherwise

• Learning algorithm
 – $\text{SVM}^{\text{light}}$
Features

• 7 types of features
 – 2 types of baseline features
 – 5 types of new features
Features

• 7 types of features
 – 2 types of baseline features
 – 5 types of new features
N-gram features

• Lemmatized unigrams, bigrams, and trigrams
 – only the top k n-gram features selected according to information gain is used for each classifier
 • k is determined using validation data
Features based on Random Indexing

• Random indexing
 – “an efficient and scalable alternative to LSI” (Sahlgren, 2005)
 – generates a semantic similarity measure between any two words
Why Random Indexing?

- May help identify **Incomplete Prompt Response** and **Relevance to Prompt** errors
 - May help find text in essay related to the prompt even if some of its words have been rephrased
 - E.g., essay talks about “jail” while prompt has “prison”

- Train a random indexing model on English Gigaword
4 Random Indexing Features

• The entire essay’s similarity to the prompt

• The essay’s highest individual sentence’s similarity to the prompt

• The highest entire essay similarity to one of the prompt sentences

• The highest individual sentence similarity to an individual prompt sentence
Features

- 7 types of features
 - 2 types of baseline features
 - 5 types of new features
Misspelling Feature

• Motivation
 – When examining the information gain top-ranked features for the Confusing Phrasing error, we see some misspelled words at the top of the list
Misspelling Feature

• Motivation
 – When examining the information gain top-ranked features for the Confusing Phrasing error, we see some misspelled words at the top of the list

• This makes sense!
 – A thesis sentence containing excessive misspellings may be less clear to the reader
Misspelling Feature

• Motivation
 – When examining the information gain top-ranked features for the Confusing Phrasing error, we see some misspelled words at the top of the list

• This makes sense!
 – A thesis sentence containing excessive misspellings may be less clear to the reader

• Introduce a misspelling feature
 – Value is the number of spelling errors in an essay’s most-misspelled sentence
Keyword Features

• Observations
 – If an essay doesn’t contain words that are semantically similar to the important words in the prompt (i.e., **keywords**), it could have a **Relevance to Prompt** error
 – If an essay doesn’t contain words semantically similar to the keywords from every part of a multi-part prompt, it could have an **Incomplete Prompt Response** error
Keyword Features

• Observations
 – If an essay doesn’t contain words that are semantically similar to the important words in the prompt (i.e., keywords), it could have a Relevance to Prompt error.
 – If an essay doesn’t contain words semantically similar to the keywords from every part of a multi-part prompt, it could have an Incomplete Prompt Response error.

• Hypothesis: could identify these two types of errors by
 1. Hand-picking keywords for each part of each prompt
 2. Designing features that encode how similar an essay’s words are to the keywords.
Step 1: Hand-Selecting Keywords

• Hand-segment each multi-part prompt into parts

• For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part
Step 1: Hand-Selecting Keywords

- Hand-segment each multi-part prompt into parts

- For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part

The prison system is outdated. No civilized society should punish its criminals: it should rehabilitate them.
Step 1: Hand-Selecting Keywords

- Hand-segment each multi-part prompt into parts

- For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part

The prison system is outdated. No civilized society should punish its criminals: it should rehabilitate them.
The prison system is outdated. No civilized society should punish its criminals: **it should rehabilitate them.**

Primary: rehabilitate
Secondary: society
Step 2: Designing Keyword Features

• **Example**: in one feature, we
 1. compute the random indexing similarity between the essay and each group of primary keywords taken from parts of the essay’s prompt
 2. assign the feature the lowest of these values
Step 2: Designing Keyword Features

• **Example**: in one feature, we
 1. compute the random indexing similarity between the essay and each group of primary keywords taken from parts of the essay’s prompt
 2. assign the feature the lowest of these values

• A low feature value suggests that the essay may have an **Incomplete Prompt Response** error
Aggregated Word N-gram Features

• **Motivation**: Regular N-gram features have a problem
 – It is infrequent for the exact same useful phrase to occur frequently
 • May render useful phrases less useful
Aggregated Word N-gram Features

• **Motivation**: Regular N-gram features have a problem
 – It is infrequent for the exact same useful phrase to occur frequently
 • May render useful phrases less useful

• **Solution**: Construct *aggregate* versions of the word N-gram features
Aggregated Word N-gram Features

• **Motivation**: Regular N-gram features have a problem
 – It is infrequent for the exact same useful phrase to occur frequently
 • May render useful phrases less useful

• **Solution**: Construct *aggregate* versions of the word N-gram features

How?
Aggregated Word N-gram Features

• For each error type e_i, we create two aggregated word n-gram features, A_{w^+i} and A_{w^-i}
Aggregated Word N-gram Features

• For each error type e_i, we create two aggregated word n-gram features, A_{w+}^i and A_{w-}^i

A_{w+}^i counts the number of word n-grams we believe indicate that the essay contains e_i
Aggregated Word N-gram Features

• For each error type e_i, we create two aggregated word n-gram features, A_{w+i} and A_{w-i}

- A_{w+i} counts the number of word n-grams we believe indicate that the essay contains e_i
- A_{w-i} counts the number of word n-grams we believe indicate that the essay does not contain e_i
Aggregated Word N-gram Features

• For each error type e_i, we create two aggregated word n-gram features, A_{w+}^i and A_{w-}^i

- A_{w+}^i counts the number of word n-grams we believe indicate that the essay contains e_i
- A_{w-}^i counts the number of word n-grams we believe indicate that the essay does not contain e_i

• To compute A_{w+}^i and A_{w-}^i, we need to create two sets of word n-grams for each error type e_i
Aggregated Word N-gram Features

• For each error type e_i, we create two aggregated word n-gram features, $A_{w+}i$ and $A_{w-}i$

- $A_{w+}i$ counts the number of word n-grams we believe indicate that the essay contains e_i
- $A_{w-}i$ counts the number of word n-grams we believe indicate that the essay does not contain e_i

• To compute $A_{w+}i$ and $A_{w-}i$, we need to create two sets of word n-grams for each error type e_i
 - word n-grams whose presence suggest essay has e_i
 - word n-grams whose presence suggest essay doesn’t have e_i
How to create these two sets?
How to create these two sets?

• For each error type e_i,
 – sort the list of all word n-gram features occurring at least 10 times in the training set by information gain
 – by inspecting the top 1000 features, manually create
 • a positive set
 • a negative set
How to create these two sets?

• For each error type e_i,
 – sort the list of all word n-gram features occurring at least 10 times in the training set by information gain
 – by inspecting the top 1000 features, manually create
 • a **positive set**
 – word n-grams whose presence suggest essay has e_i
 • a **negative set**
 – word n-grams whose presence suggest essay doesn’t have e_i
Aggregated Word N-gram Features

• May help identify the two minority error types, Missing Details and Writer Position
Aggregated Word N-gram Features

- May help identify the two minority error types, **Missing Details** and **Writer Position**
 - e.g., for **Missing Details**
 - **positive** set may contain phrases like “there is something” or “this statement”
 - **negative** set may contain words taken from an essay’s prompt
Aggregated POS N-gram Features

• Computed in the same way as the aggregated word n-gram features, except that POS n-grams (n = 1, 2, 3 and 4) are used
 – Two sets, the positive set and the negative set, are created manually for each error type i
Aggregated Frame-based Features

• For each sentence in an essay,
 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 • frame: describes an event mentioned in a sentence
 • frame element: person/object participating in the event
Aggregated Frame-based Features

• For each sentence in an essay,
 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 • frame: describes an event mentioned in a sentence
 • frame element: person/object participating in the event

 “They said they don’t believe the prison system is outdated”
Aggregated Frame-based Features

• For each sentence in an essay,
 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 • frame: describes an event mentioned in a sentence
 • frame element: person/object participating in the event

 “They said they don’t believe the prison system is outdated”
 • frame: Statement
 • frame element: they with the semantic role Speaker
Aggregated Frame-based Features

• For each sentence in an essay,
 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 • frame: describes an event mentioned in a sentence
 • frame element: person/object participating in the event

 “They said they don’t believe the prison system is outdated”
 • frame: Statement
 • frame element: they with the semantic role Speaker

 2. create a frame-based feature by pairing the frame with the frame element and its role
 • Statement-Speaker-they
Aggregated Frame-based Features

• After collecting all frame-based features, create **aggregated** frame-based features
 – Computed in the same way as aggregated word/POS n-gram features, except that frame-based features are used
 • Two sets, the **positive** set and the **negative** set, are created manually for each error type i
Aggregated Frame-based Features

• After collecting all frame-based features, create **aggregated** frame-based features
 – Computed in the same way as aggregated word/POS n-gram features, except that frame-based features are used
 • Two sets, the **positive** set and the **negative** set, are created manually for each error type i

• May help identify **Writer Position** errors
 – e.g., **positive** set may contain **Statement-Speaker-they**
 • It tells us the writer is attributing the statement made to someone else
Features for Training the Error Identification Classifiers

• Two types of baseline features
 – Lemmatized n-grams
 – Random indexing features

• Five types of novel features
 – Misspelling feature
 – Keyword features
 – Aggregated word n-gram features
 – Aggregated POS n-gram features
 – Aggregated frame-based features
Plan for the Talk

✓ Corpus and Annotations
✓ Model for identifying thesis clarity errors
➢ Model for scoring thesis clarity
• Evaluation
Score Prediction

• **Goal:**
 – predict the thesis clarity score for an essay
Score Prediction

• **Goal:**
 – predict the thesis clarity score for an essay

• **Approach:**
 – recast problem as a linear regression task
Score Prediction

• **Goal:**
 – predict the thesis clarity score for an essay

• **Approach:**
 – recast problem as a linear regression task
 – One training instance created from each training essay
 • “class” value: thesis clarity score
 • features: same as those used for error identification
 • learner: SVMlight
Plan for the Talk

✓ Corpus and Annotations
✓ Model for identifying thesis clarity errors
✓ Model for scoring thesis clarity

☑ Evaluation
Evaluation

- **Goal**: evaluate our systems for
 - error identification
 - scoring

- 5-fold cross validation
Evaluation

• **Goal**: evaluate our systems for
 – error identification
 – scoring
Evaluation Metrics

• Recall, precision, micro F, and macro F aggregated over the 5 error types
 – Micro F: places more importance on frequent classes
 – Macro F: places equal importance on all classes
Results: Error Identification

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
</tbody>
</table>
Results: Adding Misspelling Feature

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
</tbody>
</table>
Results: Adding Misspelling Feature

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
</tbody>
</table>

- small, insignificant improvements in micro and macro F
- Though designed to improve Confusing Phrasing, it has more of a positive impact on Missing Details and Writer Position
Results: Adding Keyword Features

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
</tbody>
</table>
Results: Adding Keyword Features

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
</tbody>
</table>

- Significant gains in micro F; insignificant gains in macro F
- due to large improvements in Incomplete Prompt Response and Relevance to Prompt
Results: Adding Aggregated Word n-grams

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
</tbody>
</table>
Results: Adding Aggregated Word n-grams

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
</tbody>
</table>

- Significant gains in macro F; insignificant gains in micro F
- due to large improvements in Missing Details and Writer Position
Results: Adding Aggregated POS n-grams

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>34.2</td>
<td>49.6</td>
<td>40.4</td>
<td>34.6</td>
</tr>
</tbody>
</table>
Results: Adding Aggregated POS n-grams

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>34.2</td>
<td>49.6</td>
<td>40.4</td>
<td>34.6</td>
</tr>
</tbody>
</table>

- Significant gains in both micro and macro F
 - due to large improvements in **Confusing Phrasing**, **Incomplete Prompt Response**, and **Missing Details**
Results: Adding Aggregated Frames

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>34.2</td>
<td>49.6</td>
<td>40.4</td>
<td>34.6</td>
</tr>
<tr>
<td>+ Aggregated frames</td>
<td>33.6</td>
<td>54.4</td>
<td>41.4</td>
<td>37.6</td>
</tr>
</tbody>
</table>
Results: Adding Aggregated Frames

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>34.2</td>
<td>49.6</td>
<td>40.4</td>
<td>34.6</td>
</tr>
<tr>
<td>+ Aggregated frames</td>
<td>33.6</td>
<td>54.4</td>
<td>41.4</td>
<td>37.6</td>
</tr>
</tbody>
</table>

- Significant gains in macro F; insignificant gains in micro F
 - due to very large improvements in Missing Details and Writer Position
Results: Adding Aggregated Frames

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>34.2</td>
<td>49.6</td>
<td>40.4</td>
<td>34.6</td>
</tr>
<tr>
<td>+ Aggregated frames</td>
<td>33.6</td>
<td>54.4</td>
<td>41.4</td>
<td>37.6</td>
</tr>
</tbody>
</table>

- Full system improves the baseline by 13.3% in macro F and 10.3% in micro F
Results: Adding Aggregated Frames

<table>
<thead>
<tr>
<th>System</th>
<th>Prec.</th>
<th>Recall</th>
<th>Micro F</th>
<th>Macro F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24.8</td>
<td>44.7</td>
<td>31.1</td>
<td>24.0</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>24.2</td>
<td>44.2</td>
<td>31.2</td>
<td>25.3</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>29.2</td>
<td>44.2</td>
<td>34.9</td>
<td>26.7</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>28.5</td>
<td>49.6</td>
<td>35.5</td>
<td>31.4</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>34.2</td>
<td>49.6</td>
<td>40.4</td>
<td>34.6</td>
</tr>
<tr>
<td>+ Aggregated frames</td>
<td>33.6</td>
<td>54.4</td>
<td>41.4</td>
<td>37.6</td>
</tr>
</tbody>
</table>

- Full system improves the baseline by 13.3% in macro F and 10.3% in micro F
- No consistent pattern to how precision and recall changed as more features are added
Evaluation

• **Goal**: evaluate our systems for
 – error identification
 – scoring
Scoring Metrics

• Define 3 evaluation metrics:
Scoring Metrics

• Define 3 evaluation metrics:

\[S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1 \]

measures frequency at which a system predicts the wrong score out of 7 possible scores.

\(A_i \) and \(E_i \) are annotated and estimated scores.
Scoring Metrics

• Define 3 evaluation metrics:

\[S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1 \]

(frequency of error)

\[S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i| \]

measures the average distance between a predicted score and a correct score

\[A_i \text{ and } E_i \text{ are annotated and estimated scores} \]
Scoring Metrics

• Define 3 evaluation metrics:

\[S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1 \]
(frequency of error)

\[S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i| \]
distinguishes near misses from far misses

\(A_i \) and \(E_i \) are annotated and estimated scores
Scoring Metrics

• Define 3 evaluation metrics:

\[S_1 = \frac{1}{N} \sum_{i=1}^{N} 1 \text{ } (\text{frequency of error}) \]

\[S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i| \text{ } (\text{average error distance}) \]

\[S_3 = \frac{1}{N} \sum_{i=1}^{N} (A_i - E_i)^2 \text{ } \text{measures average square of the distance between correct score and predicted score} \]

\[A_i \text{ and } E_i \text{ are annotated and estimated scores} \]
Scoring Metrics

• Define 3 evaluation metrics:

\[S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1 \]
(frequency of error)

\[S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i| \]
(average error distance)

\[S_3 = \frac{1}{N} \sum_{i=1}^{N} (A_i - E_i)^2 \]
(prefer systems whose estimations are not too often far away from correct scores)

\[A_i \text{ and } E_i \text{ are annotated and estimated scores} \]
Results: Scoring

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
</tbody>
</table>
Results: Adding Misspelling Feature

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
</tbody>
</table>
Results: Adding Misspelling Feature

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
</tbody>
</table>

- small, insignificant improvements in scoring according to all 3 metrics
Results: Adding Keyword Features

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>.663</td>
<td>.490</td>
<td>.369</td>
</tr>
</tbody>
</table>
Results: Adding Keyword Features

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>.663</td>
<td>.490</td>
<td>.369</td>
</tr>
</tbody>
</table>

- S2’s and S3’s scores are improved significantly
- Insignificant impact on S1’s score
Results: Adding Aggregated Word n-grams

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>.663</td>
<td>.490</td>
<td>.369</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>.651</td>
<td>.484</td>
<td>.374</td>
</tr>
</tbody>
</table>
Results: Adding Aggregated Word n-grams

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>.663</td>
<td>.490</td>
<td>.369</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>.651</td>
<td>.484</td>
<td>.374</td>
</tr>
</tbody>
</table>

- S2’s score is improved significantly
- insignificant impact on the other two metrics
Results: Adding the Remaining Features

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>.663</td>
<td>.490</td>
<td>.369</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>.651</td>
<td>.484</td>
<td>.374</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>.671</td>
<td>.483</td>
<td>.377</td>
</tr>
<tr>
<td>+ Aggregated frames</td>
<td>.672</td>
<td>.486</td>
<td>.382</td>
</tr>
</tbody>
</table>
Results: Adding the Remaining Features

<table>
<thead>
<tr>
<th>System</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.658</td>
<td>.517</td>
<td>.403</td>
</tr>
<tr>
<td>+ Misspelling feature</td>
<td>.654</td>
<td>.515</td>
<td>.402</td>
</tr>
<tr>
<td>+ Keyword features</td>
<td>.663</td>
<td>.490</td>
<td>.369</td>
</tr>
<tr>
<td>+ Aggregated word n-grams</td>
<td>.651</td>
<td>.484</td>
<td>.374</td>
</tr>
<tr>
<td>+ Aggregated POS n-grams</td>
<td>.671</td>
<td>.483</td>
<td>.377</td>
</tr>
<tr>
<td>+ Aggregated frames</td>
<td>.672</td>
<td>.486</td>
<td>.382</td>
</tr>
</tbody>
</table>

- Adding aggregated POS n-grams and aggregated frame-based features do not improve any scores
Summary

• Examined the problem of determining thesis clarity errors and scores in student essays
 – Proposed new features for use in these tasks
 – Lots of room for improvement

• Released the thesis clarity annotations