Examing the Role of Statistical and Linguistic Knowledge Sources in a General-Knowledge Question-Answering System

Claire Cardie Vincent Ng David Pierce
Cornell University

Chris Buckley
SaBIR Research
The chaotic development that is gobbling up the Amazon rain forest could finally be reined in with a new plan developed by officials of Amazon countries and leading scientists from around the world.

“That’s some of the most encouraging news about the Amazon rain forest in recent years,” said Thomas Lovejoy, a tropical ecologist at the Smithsonian Institution and an Amazon specialist.

“It contrasts markedly with a year ago, when there was nothing to read about conservation in the Amazon, especially in Brazil, except bad news,” Lovejoy said in a recent interview.

Sixty percent of the Amazon, the world’s largest tropical rain forest, lies in Brazil, but the forest also covers parts of the eight surrounding countries.

Lovejoy was one of the organizers of an unusual workshop held in mid-January in Manaus, Brazil, a sprawling city of 1 million people in the heart of the Amazon. It was the center of Brazil’s once-thriving rubber trade.
TREC Q&A Framework

Restrictions

- The answer exists in the collection
- All supporting info can be found in a single document
- The answer is short (less than 50 bytes)
- Can return up to 5 guesses per question to the user
Goals of the Research

Investigate the role of statistical and linguistic knowledge sources in a general-knowledge question answering system

- Knowledge sources
 - Word co-occurrence information
 - Standard IR techniques
 - Syntactic information
 - Noun phrase bracketing
 - Semantic information
 - Semantic type checking
System Architecture

IR Subsystems

question
document collection
documents, text passages
Linguistic Filters
answer hypotheses

1st Guess
2nd Guess
3rd Guess
4th Guess
5th Guess
System Architecture

Document Retrieval

Linguistic Filters

IR Subsystems

question
document collection
documents, text passages
answer hypotheses
1st Guess
2nd Guess
3rd Guess
4th Guess
5th Guess
Document Retrieval

- Vector space model for document retrieval
- Text retrieval system: Smart
 - Standard term-weighting strategies
 - No automatic relevance feedback
Baseline Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Development (38)</th>
<th>Test (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>MAR</td>
</tr>
<tr>
<td>Smart</td>
<td>3</td>
<td>3.33</td>
</tr>
</tbody>
</table>

MAR = Mean Answer Rank

- Corpora
 - TREC-8 development corpus (38 questions)
 - TREC-8 test corpus (200 questions)

- Smart performs better than its scores would suggest
System Architecture

IR Subsystems
- **Retrieval**
- **Summarization**

Linguistic Filters
- documents, text passages
- answer hypotheses

1st Guess
- 2nd Guess
- 3rd Guess
- 4th Guess
- 5th Guess
The chaotic development that is gobbling up the Amazon rain forest could finally be reined in with a new plan developed by leading scientists from around the world. “That’s some of the most encouraging news about the Amazon rain forest in recent years,” said Thomas Lovejoy, an Amazon specialist. “It contrasts markedly with a year ago, when there was nothing to read about conservation in the Amazon.”

Sixty percent of the Amazon, the world’s largest tropical rain forest, lies in Brazil.
Evaluation (Text Summarization)

<table>
<thead>
<tr>
<th></th>
<th>Development (38)</th>
<th>Test (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>MAR</td>
</tr>
<tr>
<td>Smart</td>
<td>3</td>
<td>3.33</td>
</tr>
<tr>
<td>Text Summarization</td>
<td>4</td>
<td>2.25</td>
</tr>
</tbody>
</table>

MAR = Mean Answer Rank

- Summarization method can limit performance
System Architecture

IR Subsystems

Retrieval
Summarization

Noun Phrase Filter

Linguistic Filters

question
document collection
documents, text passages
answer hypotheses

1st Guess
2nd Guess
3rd Guess
4th Guess
5th Guess
[The huge Amazon rain forest] is regarded as vital to [the global environment].

[Japan] will not fund the [construction] of [the final segment] of [a controversial highway] through [the Amazon rain forest] in [Brazil], according to [a senior Republican senator].

[Cardie & Pierce 1998]
Evaluation (TS + NPs)

<table>
<thead>
<tr>
<th></th>
<th>Development (38)</th>
<th>Test (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>MAR</td>
</tr>
<tr>
<td>Smart</td>
<td>3</td>
<td>3.33</td>
</tr>
<tr>
<td>Text Summarization</td>
<td>4</td>
<td>2.25</td>
</tr>
<tr>
<td>TS + NPs</td>
<td>7</td>
<td>2.29</td>
</tr>
</tbody>
</table>

MAR = Mean Answer Rank

- Comparison with other TREC QA systems
 - One NP per guess
Semantic Type Checking

1. Approximate question type using question word/head noun
 - **Who** is the president of the US?
 - **Which** country has the largest part of the Amazon rain forest?

2. Check that ancestor-descendent relationship holds in the type hierarchy

3. Use heuristics for words not in WordNet

```
entity, something
  |__________________________|
  | object, physical object |
  |__________________________|
  | location                |
  |__________________________|
  | region                  |
  |__________________________|
  | district, territory     |
  |__________________________|
  | administrative district |
  |__________________________|
  | country, state, nation  |
  |__________________________|
  | South American country  |
  | Brazil                  |
```
Evaluation (TS + NPs + Semantic Type)

<table>
<thead>
<tr>
<th></th>
<th>Development (38)</th>
<th>Test (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>MAR</td>
</tr>
<tr>
<td>Smart</td>
<td>3</td>
<td>3.33</td>
</tr>
<tr>
<td>Text Summarization</td>
<td>4</td>
<td>2.25</td>
</tr>
<tr>
<td>TS + NPs</td>
<td>7</td>
<td>2.29</td>
</tr>
<tr>
<td>TS + NPs + Semantic Type</td>
<td>21</td>
<td>1.38</td>
</tr>
</tbody>
</table>

MAR = Mean Answer Rank

- Heuristics do not generalize well
Reordering Summary Extracts

- **Approach**

 Define a new scoring scheme to reorder summary extracts based on linguistic knowledge

- **New scoring measure**

 For each summary extract E for question q

 $$s_q(E) = w(E) * LR_q(E)$$

 - Depends on retrieval rank of document that contains E
 - Number of linguistic relationships from q that appear in E
Evaluation

<table>
<thead>
<tr>
<th>Method</th>
<th>Development (38)</th>
<th>Test (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart</td>
<td>Correct</td>
<td>MAR</td>
</tr>
<tr>
<td>Text Summarization</td>
<td>3</td>
<td>3.33</td>
</tr>
<tr>
<td>TS + NPs</td>
<td>4</td>
<td>2.25</td>
</tr>
<tr>
<td>TS + NPs + Semantic Type</td>
<td>7</td>
<td>2.29</td>
</tr>
<tr>
<td>TS with Syntactic Ordering + NPs + Semantic Type</td>
<td>21</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.32</td>
</tr>
</tbody>
</table>

MAR = Mean Answer Rank

- One NP per guess: 65 test questions answered correctly
Sources of Error

Development questions (38)

Test questions (200)
Related Work

- Some previous research that addressed QA scenarios
 - Story understanding (Lehnert, 1978)
 - Frequently-asked questions (Burke et al., 1995)

- TREC QA systems: combination of IR and shallow NLP
 - Cymphony (Srihari and Li, 1999)
 - AnSel (Prager et al., 1999)
 - Qanda (Breck et al., 1999)
 - SyncMatcher (Oard et al., 1999)
 - LASSO (Moldovan et al., 1999)
 - …
Conclusion

- Investigated uses of a handful of linguistic and statistical knowledge sources for question answering
 - Word co-occurrence information
 - Syntactic information
 - Semantic information

- Weak linguistic knowledge can offer substantial improvements over purely IR-based techniques