Joint Modeling for Chinese Event Extraction with Rich Linguistic Features

Chen Chen and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Goal

• Advance the state of the art in Chinese event extraction
 – This work’s focus: ACE Chinese event extraction
ACE Event Extraction

Task: Extract instances of predefined event type from documents

([Resneft] **acquired** [Yugansk], paying only [9.35 billion dollars])

• 4 subtasks:
 – Trigger identification
 • **收购(acquired)**
 – Trigger type determination
 • **Transfer-Money**
 – Argument identification
 • Resneft(Resneft) **BUYER**, 尤甘斯克(Yugansk) **ARTIFACT** and 93.5亿美元[93.5 billion dollars]
 – Argument role determination
 • Resneft[**BUYER**], 尤甘斯克[**ARTIFACT**] and 93.5亿美元[**PRICE**]
Evaluation Dataset

• All 633 Chinese document in Automatic Content Extraction (ACE) Evaluation 2005 training corpus
 – 33 trigger types
 • E.g., DIE, Transport, Attack and so on.
Baseline System

• Our implementation of Li et al.’s (2012) system
 – State of the art ACE Chinese event extraction system
 – Pipeline architecture
 – Provides us with a Baseline feature set
Two Extensions to Li et al.’s System

• Joint Learning architecture
 – Goal: to reduce error propagation in pipeline architecture

• Rich linguistic features
 – employ features that capture linguistic information ranging from the character level to the discourse level
 – Goal: use these features to augment the Baseline feature set
Li et al.’s Pipeline Architecture

- Extract candidate triggers, then apply 4 classifiers, one for each subtask

Candidate triggers → Trigger Identification

1. Trigger Type Determination
2. Argument Identification
3. Trigger Role Determination

Error Propagation!!!
Our Joint Learning Architecture

- After extracting candidate triggers, apply only two classifiers

![Diagram showing the joint learning architecture]

- Jointly learn the first two tasks in the pipeline
- Jointly learn the last two tasks in the pipeline
Joint Trigger Classifier

- Jointly identify triggers and determine triggers’ type

- To generate training data,
 - Create one instance for each word in training doc
 - If the word is not a trigger, the class label is **NONE**.
 - Otherwise, the class label is trigger’s type.
 - Train the model using **SVM_multiclass**.
Joint Trigger Classifier

• Testing
 – Create one instance for each heuristically extracted candidate trigger in test document
 – Apply SVM classifier on the test instances.
 • If the test instance is assigned the class NONE, the corresponding trigger candidate is a non-trigger
 • Otherwise, the instance is classified as an identified trigger, and the trigger type is its assigned label.
Joint Argument Classifier

- Jointly identify arguments and determine arguments’ role

To generate training data,
- Create one instance by pairing each trigger with each of its candidate arguments.
 - If the candidate argument is indeed a true argument of the trigger, the class label is the argument’s role.
 - Otherwise, the class label is **NONE**.
- Train the model using **SVM_multiclass**.
Joint Argument Classifier

• Testing
 – Create one instance by pairing each predicted trigger with each of its candidate arguments.
 – Apply SVM classifier on the test instances.
 • If the test instance is assigned the class NONE, the corresponding argument candidate is classified as not an argument of the trigger.
 • Otherwise, the argument is a true argument of the trigger, and the role is the class value assigned.
Linguistic Extensions

• 6 types of features
 – Character-Based Features
 – Semantic Role Labeling
 – Trigger Probability Feature
 – Zero Pronoun Features
 – Trigger Type Consistency Features
 – Argument Consistency Features
Character-Based Features

An example:

刺伤 [injury by stabbing] is a known trigger, which appears in training set, while 撞伤 [injury by hitting] is an unknown trigger in test set.

Character-based features can be included to exploit similarity between candidate trigger 撞伤 and 刺伤, which have the common character 伤.
Character-Based Features

• Create 4 character-based features for trigger-related classifiers.
 – The first/last character of the word
 – The synonym entry of the first/last character in a synonym dictionary from Harbin Institute of Technology NLP Group.
Linguistic Extensions

• 6 types of features
 – Character-Based Features
 – Semantic Role Labeling
 – Trigger Probability Feature
 – Zero Pronoun Features
 – Trigger Type Consistency Features
 – Argument Consistency Features
Semantic Role Labeling

- Goal: detect the arguments of a predicate and their semantic roles
Why is SRL useful for event extraction?

• A large portion of the triggers defined in the event extraction task are predicates

• If a predicate happens to be a trigger, the predicate’s arguments are essentially the event’s arguments
 – Helpful for argument identification

• There is a close correspondence between the PropBank-style roles (e.g., Arg0, Arg1) provided by a SRL and the FrameNet-Style event argument roles
 – Helpful for argument role determination
Semantic Role Labeling Features

• Run SRL tool on all documents
 – (Björkelund et al., 2009).

• Encode 5 features for trigger related classifiers
 – Whether the word under consideration is a predicate.
 – The semantic type/subtype of its Arg0.
 – The semantic type/subtype of its Arg1.
Linguistic Extensions

• 6 types of features
 – Character-Based Features
 – Semantic Role Labeling
 – Trigger Probability Feature
 – Zero Pronoun Features
 – Trigger Type Consistency Features
 – Argument Consistency Features
Trigger Probability Feature

• Trigger probability of a word \(w \) is the probability that \(w \) appears as a true trigger in the training set.

• Hence, a word \(w \) with a higher probability is more likely to be a true trigger.

• Create a new feature for the trigger related classifiers, whose value is the trigger probability of the word under consideration.
Linguistic Extensions

• 6 types of features
 – Character-Based Features
 – Semantic Role Labeling
 – Trigger Probability Feature
 – Zero Pronoun Features
 – Trigger Type Consistency Features
 – Argument Consistency Features
Zero Pronoun: An Overview

• Example:
国家主席江泽民今天晚上乘专机*离开深圳*前往文莱
(President Jiang Zemin took the plane tonight, *left Shenzhen and *went to Brunei)

No overt subject for the verbs离开(left) and前往(went). The gaps before离开 and前往 are called zero pronouns. A zero pronoun has an antecedent, which is a mention that can fill the gap.
The mention江泽民(Jiang Zemin) should be used to fill the gap because it is coreferent with the two zero pronouns.
Why are zero pronouns useful for event extraction?

• If an event trigger happens to have an zero pronoun preceding it, then the antecedent of the zero pronoun can be this event’s argument
 – Helpful for argument identification
Zero Pronoun Resolution Method

• We employ a simple rule-based method for
 – Detecting zero pronouns
 – Finding the antecedents of zero pronouns
Zero Pronoun Features

• Encode zero pronoun output as two features for the argument related classifiers
 – Whether there is a zero pronoun before this trigger
 – Whether the candidate argument under consideration is coreferent with the zero pronoun
Linguistic Extensions

• 6 types of features
 – Character-Based Features
 – Semantic Role Labeling
 – Trigger Probability Feature
 – Zero Pronoun Features
 – Trigger Type Consistency Features
 – Argument Consistency Features
Trigger Type Consistency

• Observation:
 – Documents in the ACE 2005 Chinese corpus are mostly news articles, each of which describes one theme and most of true triggers are compatible with this document theme
 – Example:
 In a document that describes a fire accident, most of the annotated triggers are of type **DIE**.
Trigger Type Consistency

• If a candidate trigger’s type is the same as that of the majority of the triggers in the document, we say that it is being \textit{type-consistent} with the other triggers in the document
Why is trigger type consistency useful for event extraction?

• A candidate trigger that is type-consistent with other triggers is more likely to be a true trigger
 – Helpful for trigger identification
Trigger Type Consistency Features

• Encode type consistency as features
 – Create 33 features for trigger related classifiers, each feature corresponding to one of the 33 predefined trigger types.
 – If, for example, one trigger has type **DIE**, then
 • The value of the feature corresponding to **DIE** is the probability that a trigger in this document has type **DIE**
 • The values of the remaining 32 trigger type are all zero.
Trigger Type Consistency Features

- To calculate the probability that a trigger in this document has a certain type
 - Run the baseline trigger identifier and the trigger type classifier to identify triggers and predict their types on each document.
Linguistic Extensions

• 6 types of features
 – Character-Based Features
 – Semantic Role Labeling
 – Trigger Probability Feature
 – Zero Pronoun Features
 – Trigger Type Consistency Features
 – Argument Consistency Features
Argument Consistency

• Observation
 – True triggers typically correspond to events that are related to the main person or some major entities mentioned in the documents.
 – If a candidate trigger has arguments that are coreferent with the arguments of true triggers, the candidate trigger is likely to be a true trigger.
Argument Consistency

• Example:

[一家三口]在昨天深夜集体喝下农药[自杀]
[A family of three] drank pesticide to [suicide] last night
[三个人]总算是稳住了[病情]
[Three people] finally stabilize the [patient’s condition]

It is fairly easy to detect自杀, a verb, as a trigger in the first sentence. Knowing 一家三口 and 三个人 are coreferent, 病情, a noun, which is hard to be classified as true trigger, can be detected by the classifier.
Argument Consistency Feature

• Encode argument consistency Feature
 – The feature is the *role* of the argument that is coreferent with a predicted true trigger’s argument.
 – To obtain predicted true trigger’s argument, we run the baseline classifiers to identify triggers, predict their types, arguments and also the argument roles on each document.
Evaluation

• **Goal:** determine whether the Baseline system
 – Li et al.’s pipeline system architecture
 – Li et al.’s feature set (the Baseline feature set)
 can be improved by using
 – our joint learning architecture
 – our rich linguistic features to augment the Baseline feature set

• Performance will be measured on the 4 event extraction subtasks
Evaluation Measures

• Report recall, precision, F-score for each subtask
How do we determine correctness for the 4 subtasks?

• **Trigger identification:** A trigger is correctly identified if its *offset* exactly match a reference trigger.

• **Trigger type determination:** Trigger type is correctly determined if its trigger *type* and *offsets* exactly match a reference trigger.

• **Argument identification:** An argument is correctly identified if its *offsets*, related trigger *type* and trigger’s *offsets* exactly match a reference argument.

• **Argument role determination:** An argument role is correctly determined if its *offsets*, *role*, related trigger *type* and trigger’s *offset* exactly match a reference argument.
Evaluation Dataset

• All 633 Chinese document in Automatic Content Extraction (ACE) Evaluation 2005 training corpus

• We performed 10-fold cross-validation to obtain a more accurate estimate of system performance
 – Previous work typically evaluated on 10% of documents
Feature Selection

• To obtain better performance, we use feature selection to select different feature groups for different classifiers based on development data
Feature Selection

• Totally 7 feature groups to be selected
 – Discourse consistency feature (Li et al., 2012) (G1)
 – Semantic role labeling feature (G2)
 – Trigger probability features (G3)
 – Character-based features (G4)
 – Argument consistency feature (G5)
 – Trigger type consistency feature (G6)
 – Zero pronoun features (G7)
Feature Selection Procedure

• Backward elimination
 – Start with full 7 feature groups, together with baseline features
 – Remove in each iteration the feature group, whose removal yields the best performance
 – Run iterations till all 7 feature groups are removed and identify the feature subset that yields the best performance
Feature Selection Result on Development Set

<table>
<thead>
<tr>
<th>Approach</th>
<th>Classifier</th>
<th>Selected Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td>Trigger Identification Trigger Type Determination Argument Identification Argument Role Determination</td>
<td>G1, G2, G3, G4, G5, G6 G4 G2, G7</td>
</tr>
<tr>
<td>Joint</td>
<td>Trigger Component Argument Component</td>
<td>G2, G3, G4, G6 G2, G7</td>
</tr>
</tbody>
</table>

- Discourse consistency feature (Li et al., 2012) (G1)
- Semantic role labeling feature (G2)
- Trigger probability features (G3)
- Character-based features (G4)
- Argument consistency feature (G5)
- Trigger type consistency feature (G6)
- Zero pronoun features (G7)
Pipeline modeling results on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.6</td>
<td>75.5</td>
<td>60.6</td>
<td>47.5</td>
</tr>
<tr>
<td>Baseline features with DC</td>
<td>55.6</td>
<td>72.7</td>
<td>63.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Our selected features</td>
<td>60.5</td>
<td>70.1</td>
<td>64.9</td>
<td>56.6</td>
</tr>
</tbody>
</table>

- Pipeline modeling system can be improved by our extension features
Joint modeling results on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>Baseline features with DC</td>
<td>55.3</td>
<td>75.6</td>
<td>63.9</td>
<td>52.6</td>
</tr>
<tr>
<td>Our selected features</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

- Joint modeling system can be improved by our extension features
Comparison of Pipeline and Joint Model

• Pipeline modeling

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.6</td>
<td>75.5</td>
<td>60.6</td>
<td>47.5</td>
</tr>
<tr>
<td>Baseline features with DC</td>
<td>55.6</td>
<td>72.7</td>
<td>63.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Our selected features</td>
<td>60.5</td>
<td>70.1</td>
<td>64.9</td>
<td>56.6</td>
</tr>
</tbody>
</table>

• Joint modeling

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>Baseline features with DC</td>
<td>55.3</td>
<td>75.6</td>
<td>63.9</td>
<td>52.6</td>
</tr>
<tr>
<td>Our selected features</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>
Comparison of Li et. al. and Our system

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et. al, 2012’s system</td>
<td>R 55.6</td>
<td>P 72.7</td>
<td>F 63.0</td>
<td>R 52.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P 67.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F 58.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R 38.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P 50.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F 43.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R 34.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P 45.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F 39.2</td>
</tr>
<tr>
<td>Our joint system with rich linguistic features</td>
<td>R 62.2</td>
<td>P 71.9</td>
<td>F 66.7</td>
<td>R 58.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P 68.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F 63.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R 43.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P 57.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F 49.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R 39.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P 51.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F 44.6</td>
</tr>
</tbody>
</table>

Our system outperforms Li et.al,2012’s system by 3.7%, 4.3%, 5.7% and 5.4% on 4 subtasks
Incremental addition of features to joint model on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>+Semantic Role Labeling</td>
<td>52.1</td>
<td>77.7</td>
<td>62.4</td>
<td>49.8</td>
</tr>
<tr>
<td>+Trigger Probability</td>
<td>56.0</td>
<td>75.3</td>
<td>64.3</td>
<td>53.3</td>
</tr>
<tr>
<td>+Character Features</td>
<td>59.8</td>
<td>73.8</td>
<td>66.1</td>
<td>56.6</td>
</tr>
<tr>
<td>+Trigger Type Consistency</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
<tr>
<td>+Zero Pronouns</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Semantic Role Labeling increases 4 subtasks by 1.7%, 1.9%, 3.0% and 3.0%
Incremental addition of features to joint model on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>+Semantic Role Labeling</td>
<td>52.1</td>
<td>77.7</td>
<td>62.4</td>
<td>49.8</td>
</tr>
<tr>
<td>+Trigger Probability</td>
<td>56.0</td>
<td>75.3</td>
<td>64.3</td>
<td>53.3</td>
</tr>
<tr>
<td>+Character Features</td>
<td>59.8</td>
<td>73.8</td>
<td>66.1</td>
<td>56.6</td>
</tr>
<tr>
<td>+Trigger Type Consistency</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
<tr>
<td>+Zero Pronouns</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Trigger Probability increases 4 subtasks by **1.9%, 1.4%, 1.1% and 1.0%**
Incremental addition of features to joint model on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>+Semantic Role Labeling</td>
<td>52.1</td>
<td>77.7</td>
<td>62.4</td>
<td>49.8</td>
</tr>
<tr>
<td>+Trigger Probability</td>
<td>56.0</td>
<td>75.3</td>
<td>64.3</td>
<td>53.3</td>
</tr>
<tr>
<td>+Character Features</td>
<td>59.8</td>
<td>73.8</td>
<td>66.1</td>
<td>56.6</td>
</tr>
<tr>
<td>+Trigger Type Consistency</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
<tr>
<td>+Zero Pronouns</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Character-based features increases 4 subtasks by 1.8%, 1.5%, 0.9% and 1.0%
Incremental addition of features to joint model on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>+Semantic Role Labeling</td>
<td>52.1</td>
<td>77.7</td>
<td>62.4</td>
<td>49.8</td>
</tr>
<tr>
<td>+Trigger Probability</td>
<td>56.0</td>
<td>75.3</td>
<td>64.3</td>
<td>53.3</td>
</tr>
<tr>
<td>+Character Features</td>
<td>59.8</td>
<td>73.8</td>
<td>66.1</td>
<td>56.6</td>
</tr>
<tr>
<td>+Trigger Type Consistency</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
<tr>
<td>+Zero Pronouns</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Trigger type consistency increases 4 subtasks by 0.6%, 0.6%, 0.4% and 0.3%
Incremental addition of features to joint model on test set

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Trigger Identification</th>
<th>Trigger Type Determination</th>
<th>Argument Identification</th>
<th>Argument Role Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline Features w/o DC</td>
<td>50.0</td>
<td>77.0</td>
<td>60.7</td>
<td>47.5</td>
</tr>
<tr>
<td>+Semantic Role Labeling</td>
<td>52.1</td>
<td>77.7</td>
<td>62.4</td>
<td>49.8</td>
</tr>
<tr>
<td>+Trigger Probability</td>
<td>56.0</td>
<td>75.3</td>
<td>64.3</td>
<td>53.3</td>
</tr>
<tr>
<td>+Character Features</td>
<td>59.8</td>
<td>73.8</td>
<td>66.1</td>
<td>56.6</td>
</tr>
<tr>
<td>+Trigger Type Consistency</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
<tr>
<td>+Zero Pronouns</td>
<td>62.2</td>
<td>71.9</td>
<td>66.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Zero pronouns increases 4 subtasks by 0.0%, 0.0%, 0.9% and 0.8%
Summary

- Joint-learning, knowledge rich approach that extends Li et al.’s (2012) state-of-the-art Chinese event extraction system
- Outperformed Li et al.’s system by 3.7-5.7% on the four event extraction subtasks