Modeling Organization in Student Essays

Isaac Persing, Alan Davis, and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

EMNLP 2010 – Boston, MA
October 9, 2010
Automated Essay Scoring

• Important educational application of NLP
• Recent academic research
 – Technical errors
 – Coherence
 – Relevance to prompt
 Little work done on modeling organization
What Is Organization?

• Structure of an essay’s argument
 – Writers must: introduce topic, state their position, give support, conclude argument
 – Transitions between *functions* of discourse structures

• Related work on organization
 – E-rater, v.2 (Attali and Burstein, 2004; 2006)
 – Counts number of discourse segments present:
 • 1 thesis, 3 main ideas, 3 supporting ideas, 1 conclusion
Contributions

• New computational model of organization
• New corpus annotated with organization scores
Overview

Corpus and Annotations

• Labeling Discourse Structures

• Organization Scoring Methods
 – Heuristic-Based Methods
 – Learning-Based Methods

• Experimental Results
Selecting a Corpus

• International Corpus of Learner English (ICLE)
 – 4.5 million words in more than 6000 essays
 – Written by university undergraduates who are learners of English as a foreign language
 – Mostly (91%) argumentative writing topics
 • Contain the discourse structures we want to model

• Essays selected for annotation
 – 1003 argumentative, untimed essays
Scoring Rubric

4 – essay is **very well structured** and is organized in a way that logically develops an argument

3 – essay is **fairly well structured** but could somewhat benefit from reorganization

2 – essay is **poorly structured** and would greatly benefit from reorganization

1 – essay is **completely unstructured** and requires major reorganization

• Half-point increments (i.e., 1.5, 2.5, 3.5) allowed
Annotator Training and Selection

• 30 applicants familiarized with scoring rubric and given sample essays to annotate
• Discussed essay scores with coordinator and other annotators until consensus reached on best scores
• Selected 6 applicants with highest consistency on 8 sample essays
Inter-Annotator Agreement

- Subset of 846 essays scored by 2 annotators
- Compare scores between pairs of annotators to calculate inter-annotator agreement
- Perfect agreement on only 29% of essays
- Scores within 0.5 point on 71% of essays
- Scores within 1.0 point on 93% of essays
Overview

Corpus and Annotations

Labeling Discourse Structures

• Organization Scoring Methods
 – Heuristic-Based Methods
 – Learning-Based Methods

• Experimental Results
Functions of Discourse Structures

• Organization refers to an argument’s structure

• Essential elements of an argument:
 – Introduce topic, state position, give support, conclude

• If these elements are missing or out of order, then organization is poor

Knowing the *functions* of discourse structures is helpful to score an essay’s organization
Paragraph Function Labels

• Identify discourse function of paragraphs
• 4 paragraph function labels:
 – Introduction
 – Body
 – Conclusion
 – Rebuttal
Paragraph Function Labeling

• Label paragraphs heuristically

• Features used to label a paragraph’s function:
 – Position of paragraph within essay
 • e.g., First paragraph is likely an Introduction
 – Types of sentences within paragraph
 • e.g., Support sentence Body paragraph
 Requires that we label sentences as well
Sentence Function Labels

• Identify discourse function of sentences
• 10 sentence function labels:
 — Prompt
 — Transition
 — Thesis
 — Main Idea
 — Elaboration
 — Support
 — Conclusion
 — Rebuttal
 — Solution
 — Suggestion
Sentence Function Labeling

- Label sentences heuristically
- Features used to label a sentence’s function:
 - Position of sentence within paragraph
 - e.g., Last sentence is likely a conclusion
 - Words (unigrams) and punctuation
 - e.g., “agree” | “think” | “opinion” Thesis
Overview

Corpus and Annotations
Labeling Discourse Structures
Organization Scoring Methods
 – Heuristic-Based Methods
 – Learning-Based Methods

• Experimental Results
Heuristic-Based Organization Scoring

• Two heuristic methods to score organization
• Both methods use nearest neighbor approach:
 1) Find k essays most similar to test essay e
 2) Predict e’s organization score by aggregating the scores of its k nearest neighbors found in step 1
• These methods differ by:
 How do we find similar essays?
 How do we aggregate scores?
Method 1: Finding Similar Essays

• Essays have labeled paragraphs (e.g., *IBBBC*)
• Organization depends on *transitions* between paragraph functions
 – *Sequence* of labels is what’s important
• Find similar paragraph label sequences
 – e.g., *IBBBC* similar to *IBBRC*

Use *sequence alignment* algorithm to calculate similarity score for any pair of label sequences
Aligning Label Sequences

• Needleman-Wunsch algorithm finds an optimal alignment of a pair of sequences

• Scoring function $S(a, b)$ is set heuristically:

 $S(a, b) = +1$ when $a = b$ (reward for match)

 $S(a, b) = −1$ when $a ≠ b$ (penalty for mismatch)

 $S(a, −) = S(−, a) = −1$ (penalty for indel)

• Aligning *IBBBC* with *IBBRC* scores +3 (similar)

• Aligning *IBBBC* with *CRRRI* scores −5 (dissimilar)
Method 1: Scoring Organization

1) Find \(k \) essays most similar to test essay \(e \)
 • Calculate similarity score between essay \(e \) and each essay in the training set by aligning their sequences of paragraph labels

2) Predict test essay \(e \)’s organization score by aggregating its \(k \) nearest neighbors’ scores
 • 3 ways to aggregate scores (mean, median, mode)
 \(H_\rho \) has 3 variations
Method 2: Finding Similar Paragraphs

- Paragraphs have labeled sentences
- Organization also depends on transitions between sentence functions
- Find similar paragraphs by aligning sentence label sequences
- Associate each similar paragraph with its essay’s organization score
Method 2: Scoring Organization

1) For each paragraph p_i of test essay e:
 a) Find k paragraphs most similar to p_i
 - Calculate similarity score between paragraph p_i and each paragraph in the training set by aligning their sequences of *sentence* labels
 b) Score p_i by aggregating k nearest neighbors’ scores
 - 3 ways to aggregate scores (mean, median, mode)

2) Predict e’s organization score by aggregating its paragraphs’ scores obtained in step 1b
 - 3 ways to aggregate scores (mean, median, mode)
Heuristic-Based Scoring Methods

• Total of 12 heuristic-based scoring methods:
 – 3 variants of H_p (using paragraph label sequences)
 – 9 variants of H_s (using sentence label sequences)

Which of these 12 variations is the best?
How should we combine these methods?
Learning-Based Organization Scoring

• Use learning system to decide which methods to combine to predict organization score
 – $\text{SVM}^{\text{light}}$ implementation of regression SVMs

• Three different approaches:
 – R_l uses linear kernel
 – R_s uses string kernel
 – R_a uses alignment kernel
Regression with Linear Kernel

• R_l incorporates three types of features:
 – Nearest neighbor score predictions from H_p and H_s
 – Paragraph-label subsequences of length 1 to 5
 • Give learner more direct access to paragraph labels
 – Sentence-label subsequences of length 1 to 5
 • Organization depends on order of sentence functions
Regression with String Kernel

• SVMs enable the use of \textit{structured} features (e.g., sequences) rather than only \textit{flat} features (i.e., discrete- or real-valued)

• R_s uses \textit{string kernel} to efficiently compute similarity between paragraph label sequences based on common subsequences of length 3
Regression with Alignment Kernel

• Kernels compute similarity between examples
 Sequence alignment algorithm does this too!
 – Use alignment scores as kernel values
 – R_a uses *alignment kernel* to compute similarity

• Kernel must always return non-negative value
 – Increase each score by the lower bound to ensure all are non-negative
Regression with Composite Kernel

• We want a learner to use *multiple* kernels
• Use *composite kernel*:

\[
K_c(F_1, F_2) = \frac{1}{n} \sum_{i=1}^{n} K_i(F_1, F_2)
\]

where \(F_1\) and \(F_2\) are two essays’ features
Overview

Corpus and Annotations
Labeling Discourse Structures
Organization Scoring Methods
 Heuristic-Based Methods
 Learning-Based Methods
Experimental Results
Evaluation Metrics

• Define 3 evaluation metrics:

\[S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1 \] (frequency of error)

\[S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i| \] (mean error distance)

\[S_3 = \frac{1}{N} \sum_{i=1}^{N} (A_i - E_i)^2 \] (mean squared error)

\(A_i \) and \(E_i \) are annotated and estimated scores
Baseline Scoring System

• No standard baseline for scoring organization
• \(\text{Avg} \) – assigns the average organization score of essays in training set
 – Any score prediction system using information in the essay should be able to beat this
• Simple, but not easy to beat
 – 41% of essays have score of 3
 – 96% of essays have score within 1 point of 3
Heuristics-Based Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
</tbody>
</table>

- Both H_p and H_s outperform Avg baseline.
- H_p performs significantly ($p < 0.01$) better than both Avg and H_s systems under S_2 and S_3.

Examining the transition of paragraph functions is more important than with sentence functions.
Learning-Based Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
<tr>
<td>R_l</td>
<td>.520</td>
<td>.331</td>
<td>.186</td>
</tr>
</tbody>
</table>

- R_l performs better than Avg, H_p and H_s
- Results are not significant, even at $p < 0.1$
 - Only major benefit of R_l is that it combines all 12 heuristic methods, so we don’t have to choose one
 - H_p is a fairly effective heuristic scoring method
Learning-Based Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
<tr>
<td>R_l</td>
<td>.520</td>
<td>.331</td>
<td>.186</td>
</tr>
<tr>
<td>R_s</td>
<td>.577</td>
<td>.369</td>
<td>.222</td>
</tr>
</tbody>
</table>

- R_s performs better than Avg and H_s (S_2 and S_3) — Extracts useful information from paragraph labels
- R_s performs significantly worse than H_p and R_l — Nearest neighbor features are very valuable
Learning-Based Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
<tr>
<td>R_f</td>
<td>.520</td>
<td>.331</td>
<td>.186</td>
</tr>
<tr>
<td>R_s</td>
<td>.577</td>
<td>.369</td>
<td>.222</td>
</tr>
<tr>
<td>R_a</td>
<td>.686</td>
<td>.519</td>
<td>.429</td>
</tr>
</tbody>
</table>

- R_a performs significantly ($p < 0.01$) worse than R_s
 - Alignment kernel *appears* to not be extracting any useful information from paragraph label sequences.
Learning-Based Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
<tr>
<td>R_l</td>
<td>.520</td>
<td>.331</td>
<td>.186</td>
</tr>
<tr>
<td>R_s</td>
<td>.577</td>
<td>.369</td>
<td>.222</td>
</tr>
<tr>
<td>R_a</td>
<td>.686</td>
<td>.519</td>
<td>.429</td>
</tr>
</tbody>
</table>

- R_l performs best among learning-based methods
- R_l and H_p are statistically indistinguishable
- R_a performs significantly worse than R_s and R_l
Composite Kernel Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
<tr>
<td>R_l</td>
<td>.520</td>
<td>.331</td>
<td>.186</td>
</tr>
<tr>
<td>R_s</td>
<td>.577</td>
<td>.369</td>
<td>.222</td>
</tr>
<tr>
<td>R_a</td>
<td>.686</td>
<td>.519</td>
<td>.429</td>
</tr>
<tr>
<td>R_{ls}</td>
<td>.534</td>
<td>.332</td>
<td>.187</td>
</tr>
<tr>
<td>R_{la}</td>
<td>.541</td>
<td>.332</td>
<td>.178</td>
</tr>
<tr>
<td>R_{sa}</td>
<td>.517</td>
<td>.325</td>
<td>.177</td>
</tr>
</tbody>
</table>

- R_{sa} performs best among 2-kernel systems
Composite Kernel Scoring Systems

<table>
<thead>
<tr>
<th>System</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>.585</td>
<td>.412</td>
<td>.348</td>
</tr>
<tr>
<td>H_p</td>
<td>.548</td>
<td>.339</td>
<td>.198</td>
</tr>
<tr>
<td>H_s</td>
<td>.575</td>
<td>.397</td>
<td>.329</td>
</tr>
<tr>
<td>R_l</td>
<td>.520</td>
<td>.331</td>
<td>.186</td>
</tr>
<tr>
<td>R_s</td>
<td>.577</td>
<td>.369</td>
<td>.222</td>
</tr>
<tr>
<td>R_a</td>
<td>.686</td>
<td>.519</td>
<td>.429</td>
</tr>
<tr>
<td>R_{ls}</td>
<td>.534</td>
<td>.332</td>
<td>.187</td>
</tr>
<tr>
<td>R_{la}</td>
<td>.541</td>
<td>.332</td>
<td>.178</td>
</tr>
<tr>
<td>R_{sa}</td>
<td>.517</td>
<td>.325</td>
<td>.177</td>
</tr>
<tr>
<td>R_{lsa}</td>
<td>.517</td>
<td>.323</td>
<td>.175</td>
</tr>
</tbody>
</table>
Feature Analysis

• R_f uses three types of flat features:
 – Nearest neighbor score predictions from H_p and H_s
 – Paragraph-label subsequences of length 1 to 5
 – Sentence-label subsequences of length 1 to 5

• Feature ablation – remove each feature group independently and find drop in performance
 – Nearest neighbor features are most important
 – Paragraph label sequences are least important
Conclusion

• New computational model of organization
 – Heuristic-based and learning-based methods
• New corpus annotated with organization scores
 – Release corpus to research community