Weakly Supervised Natural Language Learning Without Redundant Views

Vincent Ng and Claire Cardie
Department of Computer Science
Cornell University
Weakly Supervised Learning

- Supervised approaches
 - require a lot of annotated data that could be expensive or even impractical to obtain

- Weakly supervised approaches
 - address the need for cost-effective annotation methods
 - idea: bootstrap from a small set of labeled data
Multi-View Weakly Supervised Learning

- Multi-view weakly supervised learning algorithms
 - bootstrap from a small set of labeled data using separate, but redundant *views* (i.e. disjoint feature subsets) of the data
 - e.g. co-training (Blum and Mitchell, 1998)
 - co-EM (Nigam and Ghani, 2000)

- Strong assumptions on the views (Blum and Mitchell, 1998)
 - each view must be sufficient for learning the target concept
 - the views must be conditionally independent given the class

- Empirically shown to be sensitive to these assumptions (Muslea *et al.*, 2002)

- Conditional independence assumption can be relaxed (Nigam and Ghani, 2000; Abney, 2002)
Multi-View Weakly Supervised Learning

- Finding a pair of views that largely satisfies both conditions is non-trivial
 - in practice, users determine a natural feature split into views that are expected to satisfy the two conditions
 - precludes the use of multi-view weakly supervised algorithms on problems without a natural feature split

- Hypothesis: single-view weakly supervised algorithms can potentially better than their multi-view counterparts on these problems
Goals of the Study

- Take one problem without a natural feature split and apply it to a multi-view weakly supervised learner and two single-view weakly supervised learners
 - Multi-view
 - co-training (Blum and Mitchell, 1998)
 - Single-view
 - self-training with bagging (Banko and Brill, 2001)
 - weakly supervised EM (Nigam et al., 2000)
Outline of the Talk

- Weakly supervised learning algorithms
 - co-training
 - self-training with bagging
 - weakly supervised EM

- A learning task without a natural feature split

- Evaluation

- An EM-based bootstrapping algorithm
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

Unlabeled data (U)
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

view V_1

Classifier h_1

view V_2

Classifier h_2

Unlabeled data (U)
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

view V_1

Classifier h_1

view V_2

Classifier h_2

Unlabeled data (U)
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

Unlabeled data (U)

Data pool (D)

Classifier h_1

Classifier h_2

view V_1

view V_2
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

Classifier h_1

Classifier h_2

Unlabeled data (U)

Data pool (D)

most confident

view V_1

view V_2
Co-Training [Blum and Mitchell, 1998]

- Multi-view algorithm

- A number of parameters need to be tuned
 - views, data pool size, growth size, number of iterations

- The algorithm is sensitive to its input parameters (Nigam and Ghani, 2000; Pierce and Cardie, 2001)
Self-Training with Bagging [Banko and Brill, 2001]

Labeled data (L)

Unlabeled data (U)
Self-Training with Bagging [Banko and Brill, 2001]

Labeled data (L)

Bagged Classifier \(h_1\)

Bagged Classifier \(h_2\)

\[\ldots\]

Bagged Classifier \(h_n\)

Unlabeled data (U)
Self-Training with Bagging [Banko and Brill, 2001]

Labeled data (L)

Bagged Classifier h_1

Bagged Classifier h_2

Bagged Classifier h_n

Unlabeled data (U)
Self-Training with Bagging [Banko and Brill, 2001]

Consistently labeled

Labeled data (L)

Bagged Classifier \(h_1 \)

Bagged Classifier \(h_2 \)

\(\cdots \) \(\cdots \) \(\cdots \)

Bagged Classifier \(h_n \)

Unlabeled data (U)
Self-Training with Bagging [Banko and Brill, 2001]

- Single-view algorithm
- Given the labeled and unlabeled data, only need to decide the number of bags to use
Weakly Supervised EM [Nigam et al., 2000]

Labeled data (L)

Unlabeled data (U)
Weakly Supervised EM [Nigam et al., 2000]

Labeled data (L)

Generative model

Unlabeled data (U)
Weakly Supervised EM [Nigam et al., 2000]

- Labeled data (L)
- Unlabeled data (U)

Generative model
Weakly Supervised EM [Nigam et al., 2000]

Labeled data (L)

Generative model

Unlabeled data (U)
Weakly Supervised EM [Nigam et al., 2000]

Generative model

Labeled data (L)

Probabilistically Labeled Data
Weakly Supervised EM [Nigam et al., 2000]
Weakly Supervised EM [Nigam et al., 2000]

Generative model

Labeled data (L)

Probabilistically Labeled Data
Weakly Supervised EM [Nigam et al., 2000]

Generative model

Labeled data (L)

Probabilistically Labeled Data
Weakly Supervised EM [Nigam et al., 2000]

- A single-view algorithm
- Given the labeled and unlabeled data, only need to decide the number of iterations to run EM
Outline of the Talk

- Weakly supervised learning algorithms
 - co-training
 - self-training with bagging
 - weakly supervised EM

- A learning task without a natural feature split
 - supervised approaches
 - weakly supervised approaches

- Evaluation

- An EM-based bootstrapping algorithm
Condoleezza Rice is a tenured professor in Stanford’s political science department. Her interest in political science was stimulated by Josef Korbel, who is former Secretary of State Madeleine Albright’s father...
Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Condoleezza Rice is a tenured professor in Stanford’s political science department. Her interest in political science was stimulated by Josef Korbel, who is former Secretary of State Madeleine Albright’s father...
Condoleezza Rice is a tenured professor in Stanford’s political science department. Her interest in political science was stimulated by Josef Korbel, who is former Secretary of State Madeleine Albright’s father...
Condoleezza Rice is a tenured professor in Stanford’s political science department. Her interest in political science was stimulated by Josef Korbel, who is former Secretary of State Madeleine Albright’s father...
Condoleezza Rice is a tenured professor in Stanford’s political science department. Her interest in political science was stimulated by Josef Korbel, who is former Secretary of State Madeleine Albright’s father...
Outline of the Talk

- Weakly supervised learning algorithms
 - co-training
 - self-training with bagging
 - weakly supervised EM

- A learning task without a natural feature split
 - supervised and weakly supervised approaches

- Evaluation

- An EM-based bootstrapping algorithm
The Supervised Learning Approach

- A two-step approach: classification + clustering

 - Classification
 - classifies a pair of NPs as coreferent or not based on constraints learned from annotated data

 - Clustering
 - coordinates the possibly contradictory pairwise classifications and constructs a partition on the set of NPs
The Weakly Supervised Learning Approach

- Use a weakly supervised algorithm to bootstrap the coreference classifier from a small set of labeled data.

- The clustering mechanism is not manipulated by the bootstrapping procedure.
The Coreference Resolution System

- Learning algorithm
 - naïve Bayes

- Clustering algorithm
 - best-first clustering

- Instance representation
 - 25 features per instance (created from each pair of NPs)
 - lexical
 - grammatical
 - semantic
 - positional
Any Natural Feature Split for Coreference?

- Views cannot be drawn from the left-hand and right-hand context

- Views cannot be drawn from features inside and outside the phrase under consideration

- View factorization is a non-trivial problem for coreference
 - Mueller et al.’s (2002) greedy method
Outline of the Talk

- Weakly supervised learning algorithms
 - co-training
 - self-training with bagging
 - weakly supervised EM

- A learning task without a natural feature split
 - supervised and weakly supervised approaches

- Evaluation

- An EM-based bootstrapping algorithm
Data Sets

- MUC-6 and MUC-7 coreference data sets
 - Documents annotated with coreference information
 - MUC-6: 30 dryrun texts + 30 evaluation texts
 - MUC-7: 30 dryrun texts + 20 evaluation texts

- Evaluation texts
 - reserved for testing

- Dryrun texts
 - one used as labeled data (L)
 - remaining 29 as unlabeled data (U)
Results (Baseline)

train a naïve Bayes classifier on the single (labeled) text using all 25 features

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
</tr>
</tbody>
</table>
Evaluating the Weakly Supervised Algorithms

- Determine the best parameter setting of each algorithm (in terms of its effectiveness in improving performance)
Co-Training Parameters

- Views (3 heuristic methods for view factorization)
 - Mueller et al.’s (2002) greedy method
 - random splitting
 - splitting according to the feature type

- Pool size
 - 500, 1000, 5000

- Growth size
 - 10, 50, 100, 200, 250

- Number of co-training iterations
 - run until performance stabilized
Co-training produces improvements over the baseline at its best parameter settings.
Learning Curve for Co-Training (MUC-6)

pool size: 5000; growth size: 50; views: Mueller’s
Learning Curve for Co-Training (MUC-6)

pool size: 5000; growth size: 50; views: feature type
Self-Training Parameters

- Number of bags
 - tested all odd number of bags between 1 and 25

- 25 bags are sufficient for most learning tasks (Breiman, 1996)
Results (Self-Training with Bagging)

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
<td>64.1</td>
<td>54.6</td>
</tr>
</tbody>
</table>

- Self-training performs better than co-training
Self-Training: Effect of the Number of Bags (MUC-6)
EM Parameters

- Number of iterations
 - run until convergence
EM only gives rise to modest performance gains over the baseline.

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
<td>64.1</td>
<td>54.6</td>
</tr>
<tr>
<td>EM</td>
<td>64.8</td>
<td>51.8</td>
<td>57.6</td>
<td>54.1</td>
</tr>
</tbody>
</table>
Results (EM)

<table>
<thead>
<tr>
<th>Method</th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
</tr>
<tr>
<td>EM</td>
<td>64.8</td>
<td>51.8</td>
</tr>
</tbody>
</table>

- EM does not perform as well as co-training.
Summary of Results

Applied one multi-view weakly supervised algorithm and two single-view algorithms to coreference resolution

- Co-training outperforms the baseline at its best parameter setting
- Self-training with bagging significantly outperforms co-training
- EM only performs slightly better than the baseline
Why EM Doesn’t Work Well

- Hypothesis: generative model is not correct
- Plausible solution: improve the model via feature selection
- The feature selection algorithm
 - imposes a total ordering on the features
 - selects the first n features
The Feature Selection Algorithm
The Feature Selection Algorithm

Training data
The Feature Selection Algorithm

Training data

Validation data
The Feature Selection Algorithm

- Training data
- Validation data
- Scoring function
The Feature Selection Algorithm

Features selected thus far (S)

Training data

Validation data

Scoring function
The Feature Selection Algorithm

- Features selected thus far (S)
- f_i
- Training data
- Validation data
- Scoring function
The Feature Selection Algorithm

- Features selected thus far (S)
- Scoring function f_i
- Training data
- Classifier
- Validation data
- Scoring function
The Feature Selection Algorithm

- Features selected thus far (S)
- f_i
- Training data
- Classifier
- Validation data
- Scoring function
The Feature Selection Algorithm

- Features selected thus far (S)
- Training data
- Classifier
- Validation data
- Scoring function
- Score \(f_i \)
The Feature Selection Algorithm

Features selected thus far (S)

Training data

Classifier

Validation data

Scoring function

Score \(f_i \)
The Feature Selection Algorithm

Features selected thus far (S)

fi

Classifier

Validation data

Scoring function

Score fi

Training data
The Feature Selection Algorithm

- Features selected thus far (S)
- Unlabeled data (U)
- Classifier
- Validation data
- Scoring function
- Score \(f_i \)
The Feature Selection Algorithm

- Labeled data (L)
- Unlabeled data (U)
- Features selected thus far (S)
- Classifier
- Validation data
- Scoring function
- Score f_i
The Feature Selection Algorithm

Labeled data (L) \rightarrow EM

Features selected thus far (S)

fi

Unlabeled data (U)

Classifier

Validation data

Scoring function

Score \(f_i \)
The Feature Selection Algorithm

Labeled data (L) -> EM

Features selected thus far (S) -> fi

Probabilistically labeled data

Classifier

Validation data

Scoring function

Score fi
The Feature Selection Algorithm

Labeled data (L) → EM

Features selected thus far (S)

Probabilistically labeled data

EM →

Classifier

Validation data

Scoring function

Score f_i
The Feature Selection Algorithm

Labeled data (L) → EM → Probabilistically labeled data

Features selected thus far (S)

Classifier

Labeled data (L) → Scoring function

Score f_i
The Feature Selection Algorithm

Labeled data (L) → EM

Features selected thus far (S) → f_i → Probabilistically labeled data

Classifier

Labeled data (L) → Scoring function

Score f_i
The Feature Selection Algorithm

Labeled data (L) → EM

Features selected thus far (S) → fi

Probabilistically labeled data

Classifier

Labeled data (L)

Scoring function

Score fi

Accuracy on labeled data
The Feature Selection Algorithm

Labeled data (L) → Features selected thus far (S) → Classifier

EM → Probabilistically labeled data

Scoring function → Score f_i

Accuracy on labeled data
Quality of bootstrapped data
Results (FS-EM)

<table>
<thead>
<tr>
<th>Method</th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
</tr>
<tr>
<td>EM</td>
<td>64.8</td>
<td>51.8</td>
</tr>
<tr>
<td>FS-EM</td>
<td>64.2</td>
<td>66.6</td>
</tr>
</tbody>
</table>

- FS-EM performs better than co-training
Results (FS-EM)

<table>
<thead>
<tr>
<th>Method</th>
<th>R</th>
<th>P</th>
<th>F</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
<td>37.4</td>
<td>43.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
<td>77.6</td>
<td>53.3</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
<td>64.1</td>
<td>54.6</td>
<td>62.6</td>
<td>58.3</td>
</tr>
<tr>
<td>EM</td>
<td>64.8</td>
<td>51.8</td>
<td>57.6</td>
<td>54.1</td>
<td>40.7</td>
<td>46.4</td>
</tr>
<tr>
<td>FS-EM</td>
<td>64.2</td>
<td>66.6</td>
<td>65.4</td>
<td>53.3</td>
<td>70.3</td>
<td>60.5</td>
</tr>
</tbody>
</table>

FS-EM performs slightly better than self-training with bagging.
Summary

- Investigated single-view weakly supervised algorithms as an alternative to multi-view algorithms for coreference resolution
 - Self-training with bagging outperforms co-training under various parameter settings
 - EM does not outperform co-training, but FS-EM does