Fast Strong Planning for FOND Problems with Multi-Root Directed Acyclic Graphs

Jicheng Fu1, Andres Calderon Jaramillo1, Vincent Ng2, Farokh Bastani2, and I-Ling Yen2

1The University of Central Oklahoma
2The University of Texas at Dallas
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain

- A planning problem is a triple $\langle s_0, g, \Sigma \rangle$, where
 - s_0 is the initial state,
 - g is the goal condition, and
 - Σ is the planning domain
Goal

- To solve strong planning problems from a Fully-Observable Non-deterministic planning domain
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain
- Informally, in a nondeterministic planning domain,
 - an action may generate multiple effects

\[
\text{act} \rightarrow \text{effects}
\]
Goal

- To solve strong planning problems from a Fully-Observable **Nondeterministic planning domain**
- Informally, in a nondeterministic planning domain,
 - an action may generate multiple effects

Formally, a nondeterministic domain
- is a 4-tuple \(\Sigma = (P, S, A, \gamma) \)
 - \(P \) is a finite set of propositions;
 - \(S \subseteq 2^P \) is a finite set of states in the system;
 - \(A \) is a finite set of actions; and
 - \(\gamma: S \times A \to 2^S \) is the state-transition function
Goal

- To solve strong planning problems from a *Fully-Observable Nondeterministic* planning domain
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain

- Full observability
 - The states of the world are fully observable
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain
Goal

- To solve strong planning problems from a Fully-Observable Nondeterministic planning domain

Strong planning

- refers to a particular type of solutions to nondeterministic problems
- different from so-called weak planning and strong cyclic planning
Weak Planning Solutions

- Solutions where there is a chance to achieve the goal

In fact, non-goal leaf states are not part of the weak plan!

In the weak plan, there is no path from a non-goal leaf state to the goal

Non-deterministic actions
Strong Cyclic Planning Solutions

- prescribe actions for all possible non-goal leaf states
 - find a path for each non-goal leaf state to the goal state
 - May loop indefinitely
 - But contain no dead-ends
 - More difficult than finding weak planning solutions

Then a strong cyclic plan is found!
Strong Planning Solutions

- prescribe actions for all possible non-goal leaf states
 - find a path for each non-goal leaf state to the goal state
 - Contain no cycles
 - Contain no dead-ends

Then a strong plan is found!
Representing a Plan

- Regardless of whether a plan is weak, strong cyclic, or strong, we can represent it as a **policy** π
 - a partial function mapping states to actions

- More formally, policy $\pi : S_\pi \rightarrow A$
 - consists of state action pairs (s, a) such that $\pi(s) = a$
 - defines which action to take under state s
How to Generate a Strong Plan

△ Choice 1:

- Upgrade a state-of-the-art strong cyclic planner
 - Such as our FIP [Fu et al., 2011] or PRP [Muise et al., 2012]
 - 3 orders of magnitude faster than other state-of-the-art planners, such as Gamer and MBP
How to Generate a Strong Plan

- State-of-the-art strong cyclic planner tries to
 - find a path for each non-goal leaf state to the goal state
 - Using a classical planner

Issue:
- Lack of control over planning efficiency
 - If the classical planner runs longer than expected
 - Hard to tell whether
 - It needs more time; or
 - It is stuck in some hopeless situation
Desirable Characteristics

- Has full control over planning
- Has heuristics to ensure planning towards the relevant search direction
An Observation

- Applying action a to state s leads to a cycle
 - Backtrack: make action a inapplicable to s
An Observation

- Applying action a to state s leads to a cycle
 - Backtrack: make action a inapplicable to s
An Observation

- Applying action a to state s leads to a cycle
 - Backtrack: make action a inapplicable to s
 - If state s only has one applicable action
 - It becomes a dead-end now
 - Backtrack continues to s'
An Observation

- Applying action a to state s leads to a cycle
 - Backtrack: make action a inapplicable to s
 - If state s only has one applicable action
 - It is a dead-end now
 - Backtrack continues to s'

![Diagram showing states and actions](image)
An Observation

- Applying action a to state s leads to a cycle
 - Backtrack: make action a inapplicable to s
 - If state s only has one applicable action
 - It is a dead-end now
 - Backtrack continues to s'
 - If s' only has one applicable action
 - Backtrack continues
An Observation

- Applying action a to state s leads to a cycle
 - Backtrack continues until
 - It reaches a state s'' that has more than one applicable action

To handle cycles efficiently, we should distinguish states with one applicable action from those with more than ones!
States with One Applicable Action

- Very common
 - 25% of the states have only one applicable action
 - Based on benchmark problems in the International Planning Competition 2008 (IPC 2008)
 - More states will become those with only one applicable action as planning goes on
 - Actions are made inapplicable if they lead to cycles or dead-ends
A MRDAG $M = \{S_{Mr}, \pi_M\}$ consists of two elements, namely, a rootset S_{Mr} and a policy π_M.

- $S_{Mr} = \{s_{r1}, s_{r2}, \ldots, s_{rk}\} \subseteq S_{\pi_M}$ consists of a set of states
- States not in S_{Mr} have only one applicable action
A state s is called an outsider of a MRDAG $M = \{S_{Mr}, \pi_M\}$ if one of the following two conditions is satisfied:

- s is a goal; or
- there exists $(s', a') \in \pi_M$ such that $s \in \gamma(s', a')$; in addition, $|A(s)| > 1$ and s does not belong to any of M’s ancestry MRDAGs (i.e., MRDAGs constructed prior to M)
A MRDAG M_c rooted at S_{Mcr} is a child of MRDAG M_p if S_{Mcr} is the set of all non-goal outsiders of M_p. M_p is called the parent of M_c.

Child MRDAG

- **Parent MRDAG**

- **Initial State**
A Feasible MRDAG

- A MRDAG $M = \{S_M, \pi_M\}$ is feasible if the following three conditions are satisfied:
 - $\forall (s, a) \in \pi_M$, applying a to s does not lead to a cycle in $G_{\pi}(s_0)$;
 - $\forall (s, a) \in \pi_M$, applying a to s does not lead to a dead-end;
 - the child of M, if any, is also feasible
A Strong Solution

- **A strong solution** is \(\pi = \pi_{M1} \cup \pi_{M2} \cup \ldots \cup \pi_{Mn} \), where \(\pi_{M1}, \pi_{M2}, \ldots, \pi_{Mn} \) are the policies of a sequence of MRDAGs \(M_1, M_2, \ldots, M_n \), if the following three conditions are satisfied:
 - \(M_1 \) is rooted at \(s_0 \), i.e., the initial state;
 - \(M_i \) is the parent of \(M_{i+1} \) for \(i = 1, 2, 3, \ldots, n - 1 \); and
 - all the outsiders of \(M_n \) are goal states
Example: Simplified Blocksworld Domain

- Deterministic action *put-down*(B)
 - puts block B onto the table
- Two nondeterministic actions
 - *pick-up*(A, B)
 - *put-on*(A, B)
 - Both actions may drop the held block A onto the table.

Initial state

```
C  B  A
```

Goal state

```
C  B  A
```
Blocksworld Example – The First Weak Plan

Initial state s_0

PICK-UP (B A)

S_1

Goal

$\text{MRDAG}_1 = \langle \{s_0\}, \{(s_0, \text{PICK-UP(B A)})\}\rangle$
Blocksworld Example – The First Weak Plan

Initial state

\[
\text{MRDAG}_1 = \langle \{s_0\}, \{(s_0, \text{PICK-UP}(B\ A))\} \rangle
\]

\[
\text{MRDAG}_2 = \langle \{s_1\}, \{(s_1, \text{PUT-ON}(B\ C))\}, \{s_2, \text{PICK-UP}(B\ C)\} \rangle
\]
Blocksworld Example – The First Weak Plan

Initial state

MRDAG_1 = ⟨{s_0}, {(s_0, PICK-UP(B A))}⟩

MRDAG_2 = ⟨{s_1}, {(s_1, PUT-DOWN(B))}⟩
Outline of the Strong Planning Algorithm

Global Variables: \(\pi, \langle s_0, g, \Sigma \rangle \)

Function STRONG_PLANNING

\(R \leftarrow \{s_0\}; \pi \leftarrow \phi \quad /\!*R\ is\ the\ rootset\ of\ the\ MRDAG*/! \)

while \(R \neq \phi \) do

\[\pi_M \leftarrow \text{GET-NEXT-SET-OF-ACTIONS}(R) \]

if \(\pi_M = \phi \) then

if \(R = \{s_0\} \) then return FAILURE else

BACKTRACK(R)

endif

else

if BUILD-MRDAG(\(\pi_M \)) \(\neq \) FAILURE then

\(\pi \leftarrow \pi \cup \pi_M \)

if All-GOAL-OUTSIDERS(\(R, \pi_M \)) then

return \(\pi \)

else

\(R \leftarrow \text{GET-OUTSIDERS}(R, \pi_M) \)

endif

endif

endif

endwhile
Blocksworld Example – The First Weak Plan

Initial state

\(s_0 \) \(s_1 \)

\(\text{PICK-UP (B A)} \)

\(\text{PUT-ON (B C)} \)

Goal

\[\text{MRDAG}_1 = \langle \{s_0\}, \{(s_0, \text{PICK-UP(B A)})\} \rangle \]

\[\text{MRDAG}_2 = \langle \{s_1\}, \{(s_1, \text{PUT-ON(B C)})\} \rangle \]
Building a Feasible MRDAG

Function EXPAND-MRDAG (\(\pi_M, s, a\))

foreach \(s' \in \gamma(s, a) \& NOT-\text{GOAL}(s')\) do

if \(s' \in S_\pi \) or \(s' \in S_{\pi_M}\) then

if \(\text{DETECT-CYCLE}(\pi \cup \pi_M) = \text{TRUE}\) then

return FAILURE

endif

elseif \(|A(s')| = 1\) then

\(\pi_M \leftarrow \pi_M \cup \{(s', a')\}\) with \(a' \in A(s')\)

if \(\text{EXPAND-MRDAG}(\pi_M, s', a') = \text{FAILURE}\) then

return FAILURE

endif

elseif \(|A(s')| = 0\) then /*dead-end*/

return FAILURE

endif

endfor

return SUCCESS
Blocksworld Example – The First Weak Plan

$MRDAG_1 = \langle \{s_0\}, \{(s_0, \text{PICK-UP(B A)})\} \rangle$

$MRDAG_2 = \langle \{s_1\}, \{\{s_1, \text{PUT-ON(B C)}\} \rangle \langle s_2, \text{PICK-UP(B C)}\rangle$
Two Heuristics

- Try to answer
 - How to impose an ordering on the states to be expanded in the same rootset?
 - How to impose an ordering on the actions to be chosen for a state in the rootset?
Most Constrained State (MCS) Heuristic

- Assume that the rootset of a MRDAG is $S_{Mr} = \{s_{r1}, s_{r2}, \ldots, s_{rk}\}$.
- Sort the states in S_{Mr} in increasing order of the number of actions applicable to a state.

<table>
<thead>
<tr>
<th>s_{r1}</th>
<th>s_{r2}</th>
<th>\ldots</th>
<th>s_{rk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{11}</td>
<td>a_{21}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td>a_{12}</td>
<td>a_{21}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td>a_{13}</td>
<td>a_{21}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{1<m1>}$</td>
<td>a_{21}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td>a_{11}</td>
<td>a_{22}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td>a_{12}</td>
<td>a_{22}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td>a_{13}</td>
<td>a_{22}</td>
<td>\ldots</td>
<td>a_{k1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{1<m1>}$</td>
<td>$a_{2<m2>}$</td>
<td>\ldots</td>
<td>$a_{k<mk>}$</td>
</tr>
</tbody>
</table>
Least Heuristic Distance (LHD)

- For each state \(s_{ri} \in S_{Mr} = \{s_{r1}, s_{r2}, \ldots, s_{rk}\} \) (1\(\leq \) \(i\) \(\leq\) \(k\)), we sort its applicable actions in increasing order of the heuristic distance to the goal.
Evaluation

- All problem instances were derived from the benchmark domains of the IPC2008 FOND track
 - Blocksworld, Tireworld, Faults, and First-responders

- Goal
 - For comparison, we implemented four versions
 - SP uses both heuristics,
 - MCS uses only the MCS heuristic,
 - LHD uses only the LHD heuristic, and
 - NOH uses none of the heuristics.
 - Two state-of-the-art strong planners: Gamer and MBP
 - give each planner 1200 seconds to solve each problem instance
Evaluation 1: Problem Coverage

<table>
<thead>
<tr>
<th>Domain</th>
<th>Gamer</th>
<th>MBP</th>
<th>SP</th>
<th>LHD</th>
<th>MCS</th>
<th>NOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>scbw (30)</td>
<td>10</td>
<td>10</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>bw(30)</td>
<td>10</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ft (10)</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>tw (12)</td>
<td>11</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>fr (50)</td>
<td>20</td>
<td>10</td>
<td>49</td>
<td>49</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>Total (132)</td>
<td>57</td>
<td>24</td>
<td>130</td>
<td>131</td>
<td>94</td>
<td>92</td>
</tr>
</tbody>
</table>

Our planners solve more problems than Gamer and MBP within the time limit.
Evaluation 2: Efficiency

Comparing with Gamer and MBP
- SP and LHD are about 4 orders of magnitude faster on strong blocksworld, first-responders, and tiresworld,
- about 3 orders of magnitude faster than Gamer on faults, and
- 2 orders of magnitude faster on strong cyclic blocksworld.

In terms of the contributions made by the two heuristics
- LHD is on average 5 times faster on first-responders, and up to 2 orders of magnitude faster on tireworld and 3 orders of magnitude faster on faults than MCS.
- MCS is about 3 times faster than LHD on strong and strong cyclic blocksworld domains.
- In terms of plan size, LHD consistently generates much compact plans than MCS.

tw-10	234.021	1	---	0.001	1	---	---	0.770	868
tw-11	241.141	5	---	0.001	5	---	---	0.016	448
tw-12	242.036	1	---	0.001	1	---	---	0.005	47
tw-14	95.095	21	---	0.009	34	---	---	0.009	32
fr-1-8	10.046	10	55.377	0.002	10	0.003	10	0.010	328
fr-1-9	52.265	11	296.332	0.003	11	---	---	0.016	448
fr-1-10	721.715	12	---	0.004	12	0.004	12	0.044	1037
fr-10-1	0.754	3	---	0.012	3	---	---	0.070	289
fr-10-2	---	---	---	---	---	---	---	---	---
Summary

- Proposed a novel data structure, MRDAG (multi-root directed acyclic graph)
- Conducted extensive experiments to evaluate how planning performance is affected by
 - the order in which the actions applicable to a state are chosen and
 - the order in which the states in the rootset of a MRDAG are expanded via the proposal of two heuristics, MCS and LHD.
Summary

- Experimental results showed that
 - the use of MRDAG indeed made cycle handling easier and more efficient, and
 - the use of the LHD heuristic significantly improved planning performance.
 - our planner significantly outperformed two state-of-the-art planners, Gamer and MBP, by solving more problems in less time.

