SinoCoreferencer: An End-to-End Chinese Event Coreference Resolver

Chen Chen and *Vincent Ng*

Human Language Technology Research Institute
University of Texas at Dallas
Event Coreference Resolution

• Determine which event mentions in a text refer to the same real-world event
Event Coreference Resolution

- Determine which event mentions in a text refer to the same real-world event

Since there is little work on event coreference, our understanding of this task is fairly limited
Goal

• Understand how a state-of-the-art end-to-end event coreference resolver can be improved
Goal

• Understand how a state-of-the-art end-to-end event coreference resolver can be improved
 – An event coreference system lies towards the end of the standard information extraction pipeline
Goal

• Understand how a state-of-the-art end-to-end event coreference resolver can be improved
 – An event coreference system lies towards the end of the standard information extraction pipeline
 – To what extent is the noisy output of each of its upstream components limiting the performance?
Goal

• Understand how a state-of-the-art end-to-end event coreference resolver can be improved
 – An event coreference system lies towards the end of the standard information extraction pipeline
 – To what extent is the noisy output of each of its upstream components limiting the performance?

Focus on Chinese event coreference resolution
Why **Chinese** Event Coreference?

• Provide publicly available **results**
 – related work mostly on English event coreference
 • Humphreys et al. (1997), Chen et al. (2009), Bejan and Harabagiu (2010), Chen et al. (2011), Lee et al. (2012), ...
Why Chinese Event Coreference?

• Provide publicly available results
 – related work mostly on English event coreference
 • Humphreys at el.(1997), Chen et al.(2009), Bejan and Harabagiu(2010), Chen et al.(2011), Lee et al.(2012), ...

• Provide a publicly available implementation
 – SinoCoreferencer contains the major components of a typical information extraction pipeline
 • Each component can be run in a standalone manner
 • Complements the Stanford Chinese NLP tools
Plan for the Talk

• ACE Event Coreference
• System Architecture
• Evaluation
Plan for the Talk

• ACE Event Coreference
• System Architecture
• Evaluation
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

- Three event mentions: [injured], [stabbed], [criminal]
- [stabbed] and [criminal] are coreferent because they refer to the same real-world event
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

- Three event mentions: [injured], [stabbed], [criminal]
 - [stabbed] and [criminal] are coreferent because they refer to the same real-world event

- **Restricted** event coreference
 - Considers only event mentions belonging to certain types
 - ACE 2005: 7 event types and 33 event subtypes
Plan for the Talk

• ACE Event Coreference
• System Architecture
• Evaluation
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification
4. Entity Coreference

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
SinoCoreferencer: System Architecture

- Event Extraction
 - 6. Event Mention Attribute Computation
 - 5. Event Mention Identification & Subtyping
 - 7. Event Argument & Role Identification
 - 4. Entity Coreference

- Entity Extraction
 - 2. Entity Typing & Subtyping
 - 1. Entity Mention Identification
 - 3. Named Entity Recognition
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
4. Entity Coreference

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition

4. Entity Coreference
8. Event Coreference
SinoCoreferencer: System Architecture

Event Extraction
- 6. Event Mention Attribute Computation
- 5. Event Mention Identification & Subtyping
- 7. Event Argument & Role Identification
- 4. Entity Coreference

Entity Extraction
- 2. Entity Typing & Subtyping
- 1. Entity Mention Identification
- 3. Named Entity Recognition
SinoCoreferencer: System Architecture

8. Event Coreference

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

4. Entity Coreference

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition

Event Extraction
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
SinoCoreferencer: System Architecture

8. Event Coreference

Event Extraction
- 6. Event Mention Attribute Computation
- 5. Event Mention Identification & Subtyping
- 7. Event Argument & Role Identification
- 4. Entity Coreference

Entity Extraction
- 2. Entity Typing & Subtyping
- 1. Entity Mention Identification
- 3. Named Entity Recognition
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification
4. Entity Coreference

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
Event Mention Identification & SubTyping

• Goals
 – Identify the event mentions
 – Label each event mention with its event subtype
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

➢ Three event mentions: [injured], [stabbed], [criminal]
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

- Three event mentions: [injured], [stabbed], [criminal]

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>injured</td>
<td>INJURE</td>
</tr>
<tr>
<td>stabbed</td>
<td>ATTACK</td>
</tr>
<tr>
<td>criminal</td>
<td>ATTACK</td>
</tr>
</tbody>
</table>
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

- Three event mentions: [injured], [stabbed], [criminal]

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>injured</td>
<td>INJURE</td>
</tr>
<tr>
<td>stabbed</td>
<td>ATTACK</td>
</tr>
<tr>
<td>criminal</td>
<td>ATTACK</td>
</tr>
</tbody>
</table>

33 event subtypes defined in ACE 2005
Event Mention
Identification & SubTyping

• Goals
 – Identify the event mentions
 – Label each event mention with its event subtype

• Why is this component useful for event coreference?
Event Mention Identification & SubTyping

• Goals
 – Identify the event mentions
 – Label each event mention with its event subtype

• Why is this component useful for event coreference?
 – Provide the event mentions for event coreference
 – Subtyping information is useful for determining whether two event mentions are coreferent
 » Two event mentions with different event subtypes cannot be coreferent
Event Mention Identification & SubTyping

• How to implement this component?
 – train a CRF (using CRF++) to jointly perform event mention identification and subtyping
Event Mention Identification & SubTyping

• How to implement this component?
 – train a CRF (using CRF++) to jointly perform event mention identification and subtyping

• Results (on ACE 2005)

<table>
<thead>
<tr>
<th>Identification</th>
<th>SubTyping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>60.0</td>
<td>71.3</td>
</tr>
</tbody>
</table>
SinoCoreferencer: System Architecture

- Event Coreference
- Event Mention Identification & Subtyping
- Event Argument & Role Identification
- Entity Coreference
- Entity Mention Identification
- Named Entity Recognition
- Entity Typing & Subtyping
- Named Entity Recognition
- Event Mention Attribute Value Computation
Event Mention
Attribute Value Computation

• Goal
 – Compute 4 attributes for each event mention: POLARITY, MODALITY, GENERICITY and TENSE
Event Mention
Attribute Value Computation

• Goal

 – Compute 4 attributes for each event mention: POLARITY, MODALITY, GENERICITY and TENSE

 Indicates whether the event happened or not

 Verb tense (if the mention is a verb)
Event Mention
Attribute Value Computation

• Goal
 – Compute 4 attributes for each event mention: POLARITY, MODALITY, GENERICITY and TENSE

Indicates whether the event happened or not
Verb tense (if the mention is a verb)

• Why is this component useful for event coreference?
Event Mention
Attribute Value Computation

• Goal
 – Compute 4 attributes for each event mention: POLARITY, MODALITY, GENERICITY and TENSE

 Indicates whether the event happened or not
 Verb tense (if the mention is a verb)

• Why is this component useful for event coreference?
 – Two event mentions that differ in any of the four attributes cannot be coreferent
Event Mention
Attribute Value Computation

• How to implement this component?
 – train 4 classifiers to predict these 4 event mention attributes, with one classifier per attribute
Event Mention
Attribute Value Computation

• How to implement this component?
 – train 4 classifiers to predict these 4 event mention attributes, with one classifier per attribute

• Results (in terms of F-score)
 • Perfect vs. predicted event mentions

<table>
<thead>
<tr>
<th></th>
<th>POLARITY</th>
<th>MODALITY</th>
<th>GENERICITY</th>
<th>TENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Perfect</td>
<td>96.5</td>
<td>86.9</td>
<td>91.2</td>
<td>67.1</td>
</tr>
<tr>
<td>Predicted</td>
<td>62.9</td>
<td>56.2</td>
<td>59.4</td>
<td>36.7</td>
</tr>
</tbody>
</table>
Event Mention
Attribute Value Computation

• How to implement this component?
 – train 4 classifiers to predict these 4 event mention attributes, with one classifier per attribute

• Results (in terms of F-score)
 • Perfect vs. predicted event mentions

<table>
<thead>
<tr>
<th></th>
<th>POLARITY</th>
<th>MODALITY</th>
<th>GENERICITY</th>
<th>TENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Perfect</td>
<td>96.5</td>
<td>86.9</td>
<td>91.2</td>
<td>67.1</td>
</tr>
<tr>
<td>Predicted</td>
<td>62.9</td>
<td>56.2</td>
<td>59.4</td>
<td>36.7</td>
</tr>
</tbody>
</table>
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
4. Entity Coreference

8. Event Coreference
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
 – Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

➢ Three event mentions: [injured], [stabbed], [criminal]
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

Three event mentions: [injured], [stabbed], [criminal]

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Arguments and their ROLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminal</td>
<td>The men [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>John Cole [TARGET]</td>
</tr>
</tbody>
</table>
ACE Event Coreference: Example

(John Cole) was cycling on (the road) (yesterday) and was [injured] when (two men) [stabbed] (him) with (a knife). (The men)’s [criminal] motivation may have something to do with (John Cole)’s testimony in a criminal case.

Three event mentions: [injured], [stabbed], [criminal]

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Arguments and their ROLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminal</td>
<td>The mens [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>John Cole [TARGET]</td>
</tr>
<tr>
<td>stabbed</td>
<td>two men [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>him [TARGET]</td>
</tr>
<tr>
<td></td>
<td>a knife [INSTRUMENT]</td>
</tr>
</tbody>
</table>
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
 – Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument

• Why is this component useful for event coreference?
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
 – Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument

• Why is this component useful for event coreference?
 – Two event mentions can be coreferent only if the arguments in the corresponding roles are coreferent
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
 – Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument

• Why is this component useful for event coreference?

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Arguments and their ROLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminal</td>
<td>The men [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>John Cole [TARGET]</td>
</tr>
<tr>
<td>stabbed</td>
<td>two men [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>him [TARGET]</td>
</tr>
<tr>
<td></td>
<td>a knife [INSTRUMENT]</td>
</tr>
</tbody>
</table>
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
 – Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument

• Why is this component useful for event coreference?

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Arguments and their ROLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminal</td>
<td>The men [ATTACKER] John Cole [TARGET]</td>
</tr>
<tr>
<td>stabbed</td>
<td>two men [ATTACKER] him [TARGET] a knife [INSTRUMENT]</td>
</tr>
</tbody>
</table>
Event Argument & Role Classification

- **Goals**
 - Identify arguments for an event mention (e.g., the participants, time, place)
 - Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument

- **Why is this component useful for event coreference?**

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Arguments and their ROLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminal</td>
<td>The men [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>John Cole [TARGET]</td>
</tr>
<tr>
<td>stabbed</td>
<td>two men [ATTACKER]</td>
</tr>
<tr>
<td></td>
<td>him [TARGET]</td>
</tr>
<tr>
<td></td>
<td>a knife [INSTRUMENT]</td>
</tr>
</tbody>
</table>
Event Argument & Role Classification

• Goals
 – Identify arguments for an event mention (e.g., the participants, time, place)
 – Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN) to each argument

• Why is this component useful for event coreference?

<table>
<thead>
<tr>
<th>Event mentions</th>
<th>Arguments and their ROLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminal</td>
<td>The men [ATTACKER]</td>
</tr>
<tr>
<td>stabbed</td>
<td>two men [ATTACKER]</td>
</tr>
</tbody>
</table>
Event Argument & Role Classification

• How to implement this component?
 – Implemented as part of our Chinese event extraction system (Chen and Ng, 2012)
 • Jointly learn the event arguments and their roles
Event Argument & Role Classification

• How to implement this component?
 – Implemented as part of our Chinese event extraction system (Chen and Ng, 2012)
 • Jointly learn the event arguments and their roles

• Results (in terms of R, P, F)
 – Perfect vs. predicted event mention boundary & subtype

<table>
<thead>
<tr>
<th></th>
<th>Argument</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfect</td>
<td>68.9</td>
<td>87.1</td>
</tr>
<tr>
<td>Predicted</td>
<td>23.1</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>R</td>
<td>61.1</td>
<td>77.2</td>
</tr>
<tr>
<td>P</td>
<td>20.0</td>
<td>31.9</td>
</tr>
</tbody>
</table>
Event Argument & Role Classification

• How to implement this component?
 – Implemented as part of our Chinese event extraction system (Chen and Ng, 2012)
 • Jointly learn the event arguments and their roles

• Results (in terms of R, P, F)
 – Perfect vs. predicted event mention boundary & subtype

<table>
<thead>
<tr>
<th></th>
<th>Argument</th>
<th></th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfect</td>
<td>68.9</td>
<td>87.1</td>
<td>76.9</td>
</tr>
<tr>
<td>Predicted</td>
<td>23.1</td>
<td>36.7</td>
<td>28.3</td>
</tr>
</tbody>
</table>
SinoCoreferencer: System Architecture

Event Extraction

8. Event Coreference
6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

4. Entity Coreference
2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
Entity Coreference Resolution

• Goal
 – Create entity coreference clusters
Entity Coreference Resolution

• **Goal**
 – Create entity coreference clusters

• **Why is this component useful for event coreference?**
Entity Coreference Resolution

• Goal
 – Create entity coreference clusters

• Why is this component useful for event coreference?
 – Two event mentions having coreferent arguments are likely to be coreferent
Entity Coreference Resolution

• How to implement this component?
 – Employs our Chinese entity coreference resolver (Chen and Ng, 2012)
 • Hybrid rule-based and learning-based approach
 • Ranked first in the CoNLL-2012 shared task
Entity Coreference Resolution

• How to implement this component?
 – Employs our Chinese entity coreference resolver (Chen and Ng, 2012)
 • Hybrid rule-based and learning-based approach
 • Ranked first in the CoNLL-2012 shared task

• Results (in terms of MUC, B^3, and $CEAF_e$)
 – Perfect vs. predicted entity mentions

<table>
<thead>
<tr>
<th></th>
<th>MUC</th>
<th>B^3</th>
<th>$CEAF_e$</th>
<th>AvgF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Perfect</td>
<td>71.5</td>
<td>85.8</td>
<td>78.0</td>
<td>67.4</td>
</tr>
<tr>
<td>Predicted</td>
<td>61.7</td>
<td>78.0</td>
<td>68.9</td>
<td>63.6</td>
</tr>
</tbody>
</table>
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification
4. Entity Coreference

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
SinoCoreferencer: System Architecture

Event Extraction

8. Event Coreference

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
4. Entity Coreference
Entity Mention Identification

• Goal
 – Provide the entity mentions needed by the downstream components
 • Candidate arguments of event mentions
 • Entity mentions needed for entity coreference
Entity Mention Identification

• Goal
 – Provide the entity mentions needed by the downstream components
 • Candidate arguments of event mentions
 • Entity mentions needed for entity coreference
 • Indirect influence on event coreference
Entity Mention Identification

• How to implement this component?
 – We train CRF classifiers to extract entity mentions
Entity Mention Identification

• How to implement this component?
 – We train CRF classifiers to extract entity mentions

• achieves an overall F-score of 84.7% on ACE 2005
SinoCoreferencer: System Architecture

Event Extraction

8. Event Coreference

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification
4. Entity Coreference

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition
Entity Typing & SubTyping

• Goal
 – Determine the type and subtype of entity mention
Entity Typing & SubTyping

• Goal
 – Determine the type and subtype of entity mention

• Why is this component useful for event coreference?
Entity Typing & SubTyping

• Goal
 – Determine the type and subtype of entity mention

• Why is this component useful for event coreference?
 – Provide features needed to train a classifier for classifying the role of an event argument in event extraction
 • Indirect influence on event coreference
Entity Typing & SubTyping

• How to implement this component?
 – train two SVM classifiers
 • One for classifying types and the other subtypes
Entity Typing & SubTyping

• How to implement this component?
 – train two SVM classifiers
 • One for classifying types and the other subtypes

• Results (in terms of R, P, and F)
 – Perfect vs. predicted entity mention boundaries

<table>
<thead>
<tr>
<th></th>
<th>Entity Typing</th>
<th>Entity SubTyping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Perfect</td>
<td>90.1</td>
<td>90.1</td>
</tr>
<tr>
<td>Predicted</td>
<td>80.5</td>
<td>77.6</td>
</tr>
</tbody>
</table>
Named Entity Recognition

• Goal
 – recognize named entities
Named Entity Recognition

• Goal
 – recognize named entities

• Why is this component useful for event coreference?
Named Entity Recognition

• Goal
 – recognize named entities

• Why is this component useful for event coreference?
 – Provide features for entity coreference resolution
 • Indirect influence on event coreference
Named Entity Recognition

• How to implement this component?
 – recast NER as a sequence labeling task
 • train an NE tagger on 37 NE classes defined in OntoNotes 5.0 with 18 features
Named Entity Recognition

• How to implement this component?
 – recast NER as a sequence labeling task
 • train an NE tagger on 37 NE classes defined in OntoNotes 5.0 with 18 features

• Overall F-score is 66.4%
SinoCoreferencer: System Architecture

1. Entity Mention Identification
2. Entity Typing & Subtyping
3. Named Entity Recognition
4. Entity Coreference
5. Event Mention Identification & Subtyping
6. Event Mention Attribute Computation
7. Event Argument & Role Identification
8. Event Coreference

Event Extraction

Entity Extraction
SinoCoreferencer: System Architecture

Event Extraction

6. Event Mention Attribute Computation
5. Event Mention Identification & Subtyping
7. Event Argument & Role Identification

Entity Extraction

2. Entity Typing & Subtyping
1. Entity Mention Identification
3. Named Entity Recognition

8. Event Coreference
Takes as input the output of event extraction and entity coreference
Event Coreference

• Encode the output of the entity coreference subsystem and the event extraction subsystem as features for training an event coreference classifier
 – Pairwise classifier that determines whether two event mentions are coreferent
Event Coreference

- Encode the output of the entity coreference subsystem and the event extraction subsystem as features for training an event coreference classifier
 - Pairwise classifier that determines whether two event mentions are coreferent

- During testing, it selects as the antecedent of each event mention the closest preceding event mention that is classified as coreferent with it
Results of Event Coreference

<table>
<thead>
<tr>
<th></th>
<th>MUC</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfect</td>
<td>80.4</td>
<td>70.0</td>
<td>74.8</td>
<td>88.4</td>
<td>79.7</td>
<td>83.8</td>
<td>57.3</td>
</tr>
<tr>
<td>Predicted</td>
<td>37.4</td>
<td>36.7</td>
<td>37.1</td>
<td>72.8</td>
<td>71.1</td>
<td>71.9</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

86
Evaluation

• To what extent is the noisy output of each of its upstream components limiting the performance?
Ablation Experiments

• Start with an event coreference resolver that assumes all upstream components are error free

• Replace each oracle component with its predicted (i.e., automatically computed) counterpart one by one
Summary of Ablation Results

• Components whose noise has big impact on event coreference performance:
 – those in event extraction and entity coreference

• Components whose noise has little impact:
 – those in entity extraction
Same as English Event Coreference?
Same as English Event Coreference?

• Chinese event coreference is more challenging in part because the upstream components may have lower accuracies
 – Chinese has **no morphology**, so in Chinese it is hard to correctly classify verb tenses
 – Chinese requires **segmentation**. Segmentation errors affect event mention detection
 – Chinese has **zero pronouns**, which make it harder to find the arguments of events
Summary

• Analyzed an ACE-style Chinese event coreference resolver

• Made our implementation publicly available
 – Facilitate the development of Chinese NLP applications
Future Work

• Examine partial coreference relations (Hovy et al., 2013)
 – subevent
 • Subevent relations form a sterotypical sequence of events
 – e.g., bombing \rightarrow destroyed \rightarrow wounding
 – membership
 • multiple instances of the same event
 – e.g., injury events corresponding to different people

NAACL HLT 2013 and ACL 2014 workshops