Lecture 7: Scoring and results assembly
Recap: tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log \text{tf}_{t,d}) \times \log_{10}(N / \text{df}_t) \]

- Best known weighting scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection
Recap: Queries as vectors

- **Key idea 1**: Do the same for queries: represent them as vectors in the space
- **Key idea 2**: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
Recap: \(\cos(q,d) \)

\[
\cos(q,d) = \frac{q \cdot d}{|q||d|} = \frac{q}{|q|} \cdot \frac{d}{|d|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

\(\cos(q,d) \) is the cosine similarity of \(q \) and \(d \) ... or, equivalently, the cosine of the angle between \(q \) and \(d \).
This lecture

- Speeding up vector space ranking
- **Putting together a complete search system**
 - Will require learning about a number of miscellaneous topics and heuristics
Computing cosine scores

\[
\text{CosineScore}(q) \\
1 \quad \text{float Scores}[N] = 0 \\
2 \quad \text{float Length}[N] \\
3 \quad \text{for each query term } t \\
4 \quad \text{do calculate } w_{t,q} \text{ and fetch postings list for } t \\
5 \quad \quad \text{for each pair } (d, tf_{t,d}) \text{ in postings list} \\
6 \quad \quad \quad \text{do } Scores[d] += w_{t,d} \times w_{t,q} \\
7 \quad \text{Read the array Length} \\
8 \quad \text{for each } d \\
9 \quad \text{do } Scores[d] = Scores[d] / \text{Length}[d] \\
10 \quad \text{return Top } K \text{ components of } Scores[]
\]
Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query $\Rightarrow K$ largest query-doc cosines.

Efficient ranking:
- Computing a single cosine efficiently.
- Choosing the K largest cosine values efficiently.
 - Can we do this without computing all N cosines?
Efficient cosine ranking

- What we’re doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes support this well
Special case – unweighted queries

- No weighting on query terms
 - Assume each query term occurs only once
- Then for ranking, don’t need to normalize query vector
 - Slight simplification of algorithm from Lecture 6
Faster cosine: unweighted query

\[
\text{FastCosineScore}(q) \\
1 \quad \text{float } Scores[N] = 0 \\
2 \quad \text{for each } d \\
3 \quad \text{do Initialize } Length[d] \text{ to the length of doc } d \\
4 \quad \text{for each query term } t \\
5 \quad \text{do calculate } w_{t,q} \text{ and fetch postings list for } t \\
6 \quad \quad \text{for each pair}(d, \text{tf}_{t,d}) \text{ in postings list} \\
7 \quad \quad \text{do add } w_{t,d} \text{ to } Scores[d] \\
8 \quad \text{Read the array } Length[d] \\
9 \quad \text{for each } d \\
10 \quad \text{do Divide } Scores[d] \text{ by } Length[d] \\
11 \quad \text{return Top } K \text{ components of } Scores[] \\
\]

Figure 7.1 A faster algorithm for vector space scores.
Computing the K largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with K highest cosines?
- Let $J =$ number of docs with nonzero cosines
 - We seek the K best of these J
Use heap for selecting top K

- Binary tree in which each node’s value > the values of children
- Takes $2J$ operations to construct, then each of K “winners” read off in $2\log J$ steps.
- For $J=1M$, $K=100$, this is about 10% of the cost of sorting.
Bottlenecks

- Primary computational bottleneck in scoring: cosine computation
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong
 - a doc not in the top K may creep into the list of K output docs
 - Is this such a bad thing?
Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- Thus cosine is anyway a proxy for user happiness
- If we get a list of K docs “close” to the top K by cosine measure, should be ok
Generic approach

- Find a set A of contenders, with $K < |A| \ll N$
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as pruning non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach
Index elimination

- Basic algorithm FastCosineScore of Fig 7.1 only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

```
COSINESCORE(q)
1  float Scores[N] = 0
2  float Length[N]
3  for each query term t
4    do calculate \( w_{t,q} \) and fetch postings list for t
5      for each pair \( (d, tf_{t,d}) \) in postings list
6        do \( \text{Scores}[d] += w_{t,d} \times w_{t,q} \)
7  Read the array \( \text{Length} \)
8  for each d
9    do \( \text{Scores}[d] = \text{Scores}[d] / \text{Length}[d] \)
10   return Top K components of \( \text{Scores}[] \)
```

Fig 7.1
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from *catcher* and *rye*
- Intuition: *in* and *the* contribute little to the scores and so don’t alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders
Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a “soft conjunction” on queries seen on web search engines (early Google)
- Easy to implement in postings traversal
3 of 4 query terms

Scores only computed for docs 8, 16 and 32.
Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t’s postings
 - Call this the champion list for t
 - (aka fancy list or top docs for t)
- Note that r has to be chosen at index build time
 - Thus, it’s possible that $r < K$
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the K top-scoring docs from amongst these
Exercises

- How can Champion Lists be implemented in an inverted index?
 - Note that the champion list has nothing to do with small doclIDs
Static quality scores

- We want top-ranking documents to be both relevant and authoritative
- *Relevance* is being modeled by cosine scores
- *Authority* is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - (Pagerank)
Modeling authority

- Assign to each document a *query-independent* quality score in [0,1] to each document d
 - Denote this by $g(d)$
- Thus, a quantity like the number of citations is scaled into [0,1]
 - Exercise: suggest a formula for this.
Net score

- Consider a simple total score combining cosine relevance and authority

 \[\text{net-score}(q,d) = g(d) + \cosine(q,d) \]

 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two “signals” of user happiness – more later

- Now we seek the top \(K \) docs by net score
Top K by net score – fast methods

- First idea: Order all postings by $g(d)$
- **Key:** this is a common ordering for all postings
- Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine score computation
- **Exercise:** write pseudocode for cosine score computation if postings are ordered by $g(d)$
Why order postings by \(g(d) \)?

- Under \(g(d) \)-ordering, top-scoring docs likely to appear early in postings traversal.
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early:
 - Short of computing scores for all docs in postings.
Champion lists in $g(d)$-ordering

- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_td$
- Seek top-K results from only the docs in these champion lists
High and low lists

- For each term, we maintain two postings lists called *high* and *low*
 - Think of *high* as the champion list
- When traversing postings on a query, only traverse *high* lists first
 - If we get more than K docs, select the top K and stop
 - Else proceed to get docs from the *low* lists
- Can be used even for simple cosine scores, without global quality $g(d)$
- A means for segmenting index into two tiers
Impact-ordered postings

- We only want to compute scores for docs for which $w_{f_{t,d}}$ is high enough
- We sort each postings list by $w_{f_{t,d}}$
- Now: not all postings in a common order!
- How do we compute scores in order to pick off top K?
 - Two ideas follow
1. Early termination

- When traversing t'’s postings, stop early after either
 - a fixed number of r docs
 - $wf_{t,d}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union
2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores
Cluster pruning: preprocessing

- Pick \sqrt{N} docs at random: call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.
Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L’s followers.
Visualization
Why use random sampling

- Fast
- Leaders reflect data distribution
General variants

- Have each follower attached to $b_1=3$ (say) nearest leaders.
- From query, find $b_2=4$ (say) nearest leaders and their followers.
- Can recur on leader/follower construction.
Exercises

- To find the nearest leader in step 1, how many cosine computations do we do?
 - Why did we have \sqrt{N} in the first place?

- What is the effect of the constants b_1, b_2 on the previous slide?

- Devise an example where this is likely to fail – i.e., we miss one of the K nearest docs.
 - Likely under random sampling.
Parametric and zone indexes

- Thus far, a doc has been a sequence of terms
- **In fact documents have multiple parts, some with special semantics:**
 - Author
 - Title
 - Date of publication
 - Language
 - Format
 - etc.
- These constitute the *metadata* about a document
Fields

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year 1601, containing *alas poor Yorick*
 - *Year = 1601 is an example of a field*
 - Also, author last name = shakespeare, etc
 - Field or parametric index: postings for each field value
 - Sometimes build range trees (e.g., for dates)

- Field query typically treated as conjunction
 - (doc *must* be authored by shakespeare)
Zone

- A zone is a region of the doc that can contain an arbitrary amount of text e.g.,
 - Title
 - Abstract
 - References ...

- Build inverted indexes on zones as well to permit querying

- E.g., “find docs with merchant in the title zone and matching the query gentle rain”
Example zone indexes

```
william.abstract  →  11  →  121  →  1441  →  1729
william.title    →  2   →  4    →  8    →  16
william.author  →  2   →  3    →  5    →  8
```

Encode zones in dictionary vs. postings.
Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- Can be done by $g(d)$ or another measure
- Inverted index thus broken up into tiers of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers
Example tiered index

Tier 1
- auto → Doc2
- best
- car → Doc1 → Doc3
- insurance → Doc2 → Doc3

Tier 2
- auto
- best → Doc1 → Doc3
- car
- insurance

Tier 3
- auto → Doc1
- best
- car → Doc2
- insurance
Query term proximity

- **Free text queries**: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the smallest window in a doc containing all query terms, e.g.,
- For the query *strained mercy* the smallest window in the doc *The quality of mercy is not strained* is 4 (words)
- Would like scoring function to take this into account – how?
Query parsers

- Free text query from user may in fact spawn one or more queries to the indexes, e.g. query *rising interest rates*
 - Run the query as a phrase query
 - If <K docs contain the phrase *rising interest rates*, run the two phrase queries *rising interest* and *interest rates*
 - If we still have <K docs, run the vector space query *rising interest rates*
 - Rank matching docs by vector space scoring
- This sequence is issued by a *query parser*
Aggregate scores

- We’ve seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications – expert-tuned
- Increasingly common: machine-learned
Putting it all together
Resources

- IIR 7, 6.1