Artificial Intelligence

Adversarial Search

Vibhav Gogate

The University of Texas at Dallas

Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld
Today

• Adversarial Search
 – Minimax search
 – α-β search
 – Evaluation functions
 – Expectimax
Game Playing State-of-the-Art
Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!
Game Playing State-of-the-Art
Game Playing State-of-the-Art

- **Chess:** IBM’s Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997.
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
 - Game 3 and 4
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
 - Game 3 and 4
 - Game 5 and 6: Kasparov wins easily!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1996)
 - Game 1: Deep Blue wins
 - Game 2: Kasparov adjusts and wins!
 - Game 3 and 4
 - Game 5 and 6: Kasparov wins easily!

4 million geeks watched the game online!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
 - Game 3, 4 and 5: End in a draw
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
 - Game 3, 4 and 5: End in a draw
 - Game 6: Kasparov plays risky. Has a chance to draw but quits!
Game Playing State-of-the-Art

- Chess: (Deep Blue vs Kasparov 1997)
 - Game 1: Kasparov wins, Deep Blue makes a random move!!!
 - Game 2: Deep Blue wins. Kasparov misses an opportunity
 - Game 3, 4 and 5: End in a draw
 - Game 6: Kasparov plays risky. Has a chance to draw but quits!

4 million geeks watched the game online!
Game Playing State-of-the-Art
Game Playing State-of-the-Art

- **Othello**: Human champions refuse to compete against computers, which are too good.
Game Playing State-of-the-Art

- **Othello:** Human champions refuse to compete against computers, which are too good.

- **Go:** Human champions are beginning to be challenged by machines, though the best humans still beat the best machines on the full board. In go, \(b > 300 \), so need pattern knowledge bases and monte carlo search (UCT)
Game Playing State-of-the-Art

- **Othello**: Human champions refuse to compete against computers, which are too good.

- **Go**: Human champions are beginning to be challenged by machines, though the best humans still beat the best machines on the full board. In go, $b > 300$, so need pattern knowledge bases and monte carlo search (UCT)

- **Pacman**: unknown
Types of Games

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect Info</td>
<td>chess, checkers, go, othello</td>
</tr>
<tr>
<td>Imperfect Info</td>
<td>stratego</td>
</tr>
</tbody>
</table>

Number of Players? 1, 2, …?
Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $S \times P \rightarrow R$

- Solution for a player is a *policy*: $S \rightarrow A$
Deterministic Single-Player

• Deterministic, single player, perfect information:
 – Know the rules, action effects, winning states
 – E.g. Freecell, 8-Puzzle, Rubik’s cube
• ... it’s just search!
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!

- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
- After search, can pick move that leads to best node
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!

- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
- After search, can pick move that leads to best node
Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik’s cube
- ... it’s just search!

- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don’t have path sums as before (utilities at end)
- After search, can pick move that leads to best node
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result
Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - One player maximizes result
 - The other minimizes result

Minimax search
- A state-space search tree
- Players alternate
- Choose move to position with highest *minimax value* = best achievable utility against best play
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree

MAX (X)
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree
Tic-tac-toe Game Tree
Minimax Example

\[\max \]

\[\min \]
Minimax Example

\[\text{max} \]

\[\text{min} \]
Minimax Example

max

min
Minimax Example

max

min
Minimax Example

max

min

A_{11} A_{12} A_{13} A_{21} A_{22} A_{23} A_{31} A_{32} A_{33}

3 12 8 2 4 6 14 5 2
Minimax Example

max

min

A_{11} A_{12} A_{13} A_{21} A_{22} A_{23} A_{31} A_{32} A_{33}

3 12 8 2 4 6 14 5 2
Minimax Search

function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← −∞
 for a, s in Successors(state) do v ← Max(v, Min-Value(s))
 return v

function Min-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← ∞
 for a, s in Successors(state) do v ← Min(v, Max-Value(s))
 return v
Minimax Properties

- Optimal?
- Time complexity?
- Space complexity?
Minimax Properties

- **Optimal?**
 - Yes, against perfect player. Otherwise, can do even better! Why?

- **Time complexity?**

- **Space complexity?**
Minimax Properties

- Optimal?
 - Yes, against perfect player. Otherwise, can do even better! Why?

- Time complexity?
 - $O(b^m)$

- Space complexity?
Minimax Properties

- **Optimal?**
 - Yes, against perfect player. Otherwise, can do even better! Why?

- **Time complexity?**
 - $O(b^m)$

- **Space complexity?**
 - $O(bm)$
Minimax Properties

- **Optimal?**
 - Yes, against perfect player. Otherwise, can do even better! Why?

- **Time complexity?**
 - $O(b^m)$

- **Space complexity?**
 - $O(bm)$

- **For chess, $b \sim 35$, $m \sim 100$**
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Do We Need to Evaluate Every Node?
\(\alpha - \beta \) Pruning Example

Progress of search...
α-β Pruning

- **General configuration**
 - α is the best value that MAX can get at any choice point along the current path.
 - If n becomes worse than α, MAX will avoid it, so can stop considering n’s other children.
 - Define β similarly for MIN.
Alpha-Beta Pseudocode

inputs: state, current game state
- α, value of best alternative for MAX on path to state
- β, value of best alternative for MIN on path to state

returns: a utility value

function \text{MAX-VALUE}(state, \alpha, \beta)

if TERMINAL-TEST(state) then
 return UTILITY(state)

$v \leftarrow -\infty$

for a, s in SUCCESSORS(state) do
 $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s, \alpha, \beta))$
 if $v \geq \beta$ then return v

$\alpha \leftarrow \text{MAX}(\alpha, v)$

return v

function \text{MIN-VALUE}(state, \alpha, \beta)

if TERMINAL-TEST(state) then
 return UTILITY(state)

$v \leftarrow +\infty$

for a, s in SUCCESSORS(state) do
 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(s, \alpha, \beta))$
 if $v \leq \alpha$ then return v

$\beta \leftarrow \text{MIN}(\beta, v)$

return v
Alpha-Beta Pseudocode

inputs: \textit{state}, current game state
\hspace{1em} \alpha, \textit{value} of best alternative for MAX on path to \textit{state}
\hspace{1em} \beta, \textit{value} of best alternative for MIN \textit{on path to state}
returns: a utility value

function MAX-VALUE(\textit{state}, \alpha, \beta)
if TERMINAL-TEST(\textit{state}) then
\hspace{1em} return UTILITY(\textit{state})
\hspace{1em} \nu \leftarrow -\infty
for \textit{a, s} in SUCCESSORS(\textit{state}) do
\hspace{1em} \nu \leftarrow \text{MAX}(\nu, \text{MIN-VALUE}(s, \alpha, \beta))
\hspace{1em} if \nu \geq \beta then return \nu
\hspace{1em} \alpha \leftarrow \text{MAX}(\alpha, \nu)
return \nu

function MIN-VALUE(\textit{state}, \alpha, \beta)
if TERMINAL-TEST(\textit{state}) then
\hspace{1em} return UTILITY(\textit{state})
\hspace{1em} \nu \leftarrow +\infty
for \textit{a, s} in SUCCESSORS(\textit{state}) do
\hspace{1em} \nu \leftarrow \text{MIN}(\nu, \text{MAX-VALUE}(s, \alpha, \beta))
\hspace{1em} if \nu \leq \alpha then return \nu
\hspace{1em} \beta \leftarrow \text{MIN}(\beta, \nu)
return \nu

At max node:
Prune if \nu \geq \beta;
Update \alpha

At min node:
Prune if \nu \leq \alpha;
Update \beta
Alpha-Beta Pruning Example

\[\alpha = -\infty \]
\[\beta = +\infty \]

At max node:
- Prune if \(v \geq \beta \);
- Update \(\alpha \)

At min node:
- Prune if \(v \leq \alpha \);
- Update \(\beta \)
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = +\infty$

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = +\infty$

$\alpha = -\infty$
$\beta = +\infty$

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if $v \geq \beta$;
- Update α

At min node:
- Prune if $v \leq \alpha$;
- Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha \) is MAX’s best alternative here or above
\(\beta \) is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX's best alternative here or above
β is MIN's best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = 3 \)

3

12

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = 3 \)

\(\alpha = -\infty \)
\(\beta = 3 \)

8

\(\alpha \) is MAX’s best alternative here or above
\(\beta \) is MIN’s best alternative here or above
At max node:
- Prune if $v \geq \beta$;
- Update α

At min node:
- Prune if $v \leq \alpha$;
- Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX's best alternative here or above
β is MIN's best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\[\alpha = -\infty \quad \beta = +\infty \]

\[\alpha = 3 \quad \beta = +\infty \]

\[\alpha = 3 \quad \beta = 2 \]

\[\alpha = 3 \quad \beta = +\infty \]

\[\alpha = 3 \quad \beta = +\infty \]

\[\alpha = 3 \quad \beta = +\infty \]

\[\alpha = -\infty \quad \beta = +\infty \]

\[\alpha = -\infty \quad \beta = +\infty \]

\[\alpha = -\infty \quad \beta = 3 \]

\[\alpha = -\infty \quad \beta = 3 \]

\[\alpha = -\infty \quad \beta = 3 \]

\[\alpha = -\infty \quad \beta = 3 \]

\[\alpha = -\infty \quad \beta = 3 \]

\[\alpha = -\infty \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]

\[\alpha = 8 \quad \beta = 3 \]
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX's best alternative here or above
β is MIN's best alternative here or above
At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’ s best alternative here or above
β is MIN’ s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = 3 \)
\(\beta = +\infty \)

\(\alpha = 3 \)
\(\beta = 2 \)

\(\alpha = 3 \)
\(\beta = 14 \)

\(\alpha = 3 \)
\(\beta = 5 \)

\(\alpha = 3 \)
\(\beta = 1 \)

\(\alpha = -\infty \)
\(\beta = +\infty \)

\(\alpha = -\infty \)
\(\beta = 3 \)

\(\alpha = -\infty \)
\(\beta = 3 \)

\(\alpha = -\infty \)
\(\beta = 3 \)

\(\alpha = 8 \)
\(\beta = 3 \)

\(\alpha \) is MAX’s best alternative here or above

\(\beta \) is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
- Prune if \(v \geq \beta \);
- Update \(\alpha \)

At min node:
- Prune if \(v \leq \alpha \);
- Update \(\beta \)

\(\alpha \) is MAX’s best alternative here or above

\(\beta \) is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Update α

At min node:
Prune if $v \leq \alpha$;
Update β

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pruning Example

At max node:
Prune if \(v \geq \beta \);
Update \(\alpha \)

At min node:
Prune if \(v \leq \alpha \);
Update \(\beta \)

\(\alpha \) is MAX’ s best alternative here or above
\(\beta \) is MIN’ s best alternative here or above
Alpha-Beta Pruning Properties

• This pruning has no effect on final result at the root

• Values of intermediate nodes might be wrong!
 – but, they are bounds

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
 – Time complexity drops to $O(b^{m/2})$
 – Doubles solvable depth!
 – Full search of, e.g. chess, is still hopeless...
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with heuristic eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes/sec
 - So can check 1M nodes per move
 - α–β reaches about depth 8 decent chess program
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with heuristic eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 decent chess program
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with heuristic eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α–β reaches about depth 8 decent chess program
Heuristic Evaluation Function

- Function which scores non-terminals
Heuristic Evaluation Function

- Function which scores non-terminals

- Ideal function: returns the utility of the position
Heuristic Evaluation Function

- Function which scores non-terminals

\[Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:
 - e.g. \(f_1(s) = \text{(num white queens} - \text{num black queens)} \), etc.
What features would be good for Pacman?

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$
Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating
Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

Why do we want to do this for multiplayer games?
Stochastic Single-Player

• What if we don’t know what the result of an action will be? E.g.,
 – In solitaire, shuffle is unknown
 – In minesweeper, mine locations
Stochastic Single-Player

• What if we don’t know what the result of an action will be? E.g.,
 – In solitaire, shuffle is unknown
 – In minesweeper, mine locations

 ▪ Can do **expectimax search**
 ▪ Chance nodes, like actions except the environment controls the action chosen
 ▪ Max nodes as before
 ▪ Chance nodes take average (expectation) of value of children
Maximum Expected Utility

• Why should we average utilities? Why not minimax?

• Principle of maximum expected utility: an agent should chose the action which maximizes its expected utility, given its knowledge
 – General principle for decision making
 – Often taken as the definition of rationality
 – We’ll see this idea over and over in this course!

• Let’s decompress this definition...
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

- Example: traffic on freeway?
 - Random variable: T = whether there’s traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: \(P(T=\text{none}) = 0.25, P(T=\text{light}) = 0.55, P(T=\text{heavy}) = 0.20 \)

- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one

- As we get more evidence, probabilities may change:
 - \(P(T=\text{heavy}) = 0.20, P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60 \)
 - We’ll talk about methods for reasoning and updating probabilities later
What are Probabilities?

- Objectivist / frequentist answer:

- Subjectivist / Bayesian answer:
What are Probabilities?

- **Objectivist / frequentist answer:**
 - Averages over repeated *experiments*
 - E.g. empirically estimating $P(\text{rain})$ from historical observation
 - E.g. pacman’s estimate of what the ghost will do, given what it has done in the past
 - Assertion about how future experiments will go (in the limit)
 - Makes one think of *inherently random* events, like rolling dice

- **Subjectivist / Bayesian answer:**
What are Probabilities?

- **Objectivist / frequentist answer:**
 - Averages over repeated *experiments*
 - E.g. empirically estimating $P(\text{rain})$ from historical observation
 - E.g. pacman’s estimate of what the ghost will do, given what it has done in the past
 - Assertion about how future experiments will go (in the limit)
 - Makes one think of *inherently random* events, like rolling dice

- **Subjectivist / Bayesian answer:**
 - Degrees of belief about unobserved variables
 - E.g. an agent’s belief that it’s raining, given the temperature
 - E.g. pacman’s belief that the ghost will turn left, given the state
 - Often *learn* probabilities from past experiences (more later)
 - New evidence *updates beliefs* (more later)
Uncertainty Everywhere
Uncertainty Everywhere

• Not just for games of chance!
 – I’m sick: will I sneeze this minute?
 – Email contains “FREE!”: is it spam?
 – Tooth hurts: have cavity?
 – 60 min enough to get to the airport?
 – Robot rotated wheel three times, how far did it advance?
 – Safe to cross street? (Look both ways!)
Uncertainty Everywhere

• Not just for games of chance!
 – I’m sick: will I sneeze this minute?
 – Email contains “FREE!”: is it spam?
 – Tooth hurts: have cavity?
 – 60 min enough to get to the airport?
 – Robot rotated wheel three times, how far did it advance?
 – Safe to cross street? (Look both ways!)

• Sources of uncertainty in random variables:
 – Inherently random process (dice, etc)
 – Insufficient or weak evidence
 – Ignorance of underlying processes
 – Unmodeled variables
 – The world’s just noisy – it doesn’t behave according to plan!
Reminder: Expectations

- We can define function \(f(X) \) of a random variable \(X \)

- The expected value of a function is its average value, weighted by the probability distribution over inputs

- Example: How long to get to the airport?
 - Length of driving time as a function of traffic:
 \[L(\text{none}) = 20, \ L(\text{light}) = 30, \ L(\text{heavy}) = 60 \]
 - What is my expected driving time?
 - Notation: \(E_P(T) [L(T)] \)
 - Remember, \(P(T) = \{\text{none}: 0.25, \text{light}: 0.5, \text{heavy}: 0.25\} \)

\[
E[L(T)] = L(\text{none}) \times P(\text{none}) + L(\text{light}) \times P(\text{light}) + L(\text{heavy}) \times P(\text{heavy}) \\
E[L(T)] = (20 \times 0.25) + (30 \times 0.5) + (60 \times 0.25) = 35
\]
Review: Expectations

- Real valued functions of random variables:

\[f : X \rightarrow R \]

- Expectation of a function of a random variable

\[E_{P(X)}[f(X)] = \sum_{x} f(x)P(x) \]

- Example: Expected value of a fair die roll

<table>
<thead>
<tr>
<th>(X)</th>
<th>(P)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{6})</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{6})</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{6})</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{6})</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{1}{6})</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{1}{6})</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5
\]
Utilities

• Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences

• Where do utilities come from?
 – In a game, may be simple (+1/-1)
 – Utilities summarize the agent’s goals
 – Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)

• In general, we hard-wire utilities and let actions emerge (why don’t we let agents decide their own utilities?)

• More on utilities soon...
Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

\[
\text{if } state \text{ is a Max node then}\n\text{return the highest } \text{ExpectiMinimax-Value of Successors}(state)\n\text{if } state \text{ is a Min node then}\n\text{return the lowest } \text{ExpectiMinimax-Value of Successors}(state)\n\text{if } state \text{ is a chance node then}\n\text{return average of } \text{ExpectiMinimax-Value of Successors}(state)\n\]
Stochastic Two-Player

• Dice rolls increase b: 21 possible rolls with 2 dice
 – Backgammon has 20 legal moves
 – Depth 4 = $20 \times (21 \times 20)^3 = 1.2 \times 10^9$

• As depth increases, probability of reaching a given node shrinks
 – So value of lookahead is diminished
 – So limiting depth is less damaging
 – But pruning is less possible...

• TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play
Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly
What if we don’t know what the result of an action will be? E.g.,
- In solitaire, next card is unknown
- In minesweeper, mine locations
- In pacman, the ghosts act randomly

- Can do **expectimax search**
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate **expected utilities**
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children
Expectimax Search Trees

• What if we don’t know what the result of an action will be? E.g.,
 – In solitaire, next card is unknown
 – In minesweeper, mine locations
 – In pacman, the ghosts act randomly

▪ Can do expectimax search
 ▪ Chance nodes, like min nodes, except the outcome is uncertain
 ▪ Calculate expected utilities
 ▪ Max nodes as in minimax search
 ▪ Chance nodes take average (expectation) of value of children

▪ Later, we’ll learn how to formalize the underlying problem as a **Markov Decision Process**
Expectimax Search
In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state:

- Model could be a simple uniform distribution (roll a die)
- Model could be sophisticated and require a great deal of computation
- We have a node for every outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!
In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state:

- Model could be a simple uniform distribution (roll a die)
- Model could be sophisticated and require a great deal of computation
- We have a node for every outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!

For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes.
Expectimax Pseudocode

def value(s):
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s):
 values = [value(s') for s' in successors(s)]
 return max(values)

def expValue(s):
 values = [value(s') for s' in successors(s)]
 weights = [probability(s, s') for s' in successors(s)]
 return expectation(values, weights)
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman
Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td></td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman
Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 493</td>
<td></td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td></td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman
Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 493</td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td></td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman
Expectimax for Pacman

Results from playing 5 games

<table>
<thead>
<tr>
<th></th>
<th>Minimizing Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: 493</td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td></td>
<td>Avg. Score: -303</td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman
Expectimax Pruning?
Expectimax Pruning?

- Not easy
 - exact: need bounds on possible values
 - approximate: sample high-probability branches
Expectimax Evaluation

• Evaluation functions quickly return an estimate for a node’s true value (which value, expectimax or minimax?)
• For minimax, evaluation function scale doesn’t matter
 – We just want better states to have higher evaluations (get the ordering right)
 – We call this insensitivity to monotonic transformations
• For expectimax, we need \textit{magnitudes} to be meaningful
Expectimax Evaluation

• Evaluation functions quickly return an estimate for a node’s true value (which value, expectimax or minimax?)
• For minimax, evaluation function scale doesn’t matter
 – We just want better states to have higher evaluations (get the ordering right)
 – We call this insensitivity to monotonic transformations
• For expectimax, we need *magnitudes* to be meaningful
Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node’s true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need *magnitudes* to be meaningful
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```
if state is a MAX node then
    return the highest Expectiminimax-Value of Successors(state)
if state is a MIN node then
    return the lowest Expectiminimax-Value of Successors(state)
if state is a chance node then
    return average of Expectiminimax-Value of Successors(state)
```
Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon has 20 legal moves
 - Depth 4 = $20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: world-champion level play
Multi-player Non-Zero-Sum Games

• Similar to minimax:
 – Utilities are now tuples
 – Each player maximizes their own entry at each node
 – Propagate (or back up) nodes from children
 – Can give rise to cooperation and competition dynamically…