A HMM (N, Σ, π, A, B) consists of the following elements:

- N is a positive integer specifying the number of states in the model.
- Σ is a set of output symbols (note: we are discussing discrete cases now).
Hidden Markov Models

Other parameters Θ:

- π_j is the probability of choosing state j as an initial state.
- a_{jk} is the probability of transitioning from state j to state k.
- $b_j(o)$ is the probability of emitting symbol o from state j.
- In total: Θ has $N + N^2 + N|\Sigma|$ parameters.

Note that we have the following constraints:

$$\sum_{j=1}^{N} \pi_j = 1.$$
for all j, $\sum_{k=1}^{N} a_{jk} = 1.$
for all j, $\sum_{o \in \Sigma} b_j(o) = 1.$

Hidden Markov Models

An HMM specifies a probability for each possible (x,y) pair, where x is a sequence of symbols drawn from Σ, and y is a sequence of states drawn from the integers $1, \ldots, N$. The sequences x and y are restricted to have the same length.

For example, say we have an HMM with $N=2$, $\Sigma=\{a, b\}$, and with some choice of the parameters.

Take $x = <a,a,b,b>$ and $y = <1,2,2,1>$. Then in this case,

$$P(x, y \mid \Theta) = \pi_1 a_1 a_2 a_2 a_1 b_1(a) b_2(a) b_2(b) b_1(b)$$
Three Problems in Hidden Markov Models

• Question 1: Evaluation
 What is the probability of the observation sequence $O_1O_2 \ldots O_T$, $P(O_1O_2 \ldots O_T|\lambda)$?

• Question 2: Most Probable Path
 Given $O_1O_2 \ldots O_T$, what is the most probable path that I took?

• Question 3: Learning HMMs:
 Given $O_1O_2 \ldots O_T$, what is the maximum likelihood HMM that could have produced this string of observations?

Starting out with Observable Markov Models

We have state sequences.
How to train?

$A = \{a_{ij}\}$:

$$a_{ij} = \frac{C(i \rightarrow j)}{\sum_{q \in Q} C(i \rightarrow q)}$$
Training Hidden Markov Models

Say we have an HMM with \(N = 2 \), \(K = \{ e, f, g, h \} \).

The **supervised** HMM training problem

Given paired sequences \(\{(e/1 \ g/2), (e/1 \ h/2), (f/1 \ h/2), (f/1 \ g/2)\} \), how to choose parameter values for \(\pi, a_{ij}, \) and \(b(o) \)?

The **unsupervised** HMM training problem

Given output sequences \(\{(e \ g), (e \ h), (f \ h), (f \ g)\} \), how to choose parameter values for \(\pi, a_{ij}, \) and \(b(o) \)?

How?

Maximum likelihood estimation!

What’s the log likelihood function \(L(\Theta) \)?

MLE for HMMs

We have two sets \(X \) and \(Y \), and a joint distribution \(P(x, y | \Theta) \)

In HMM:

- each \(x \in X \) is an output sequence \(o_1, \ldots, o_T \)
- each \(y \in Y \) is a state sequence \(q_1, \ldots, q_T \)

If we have fully observed data, \((x, y) \) pairs, then

\[
L(\Theta) = \sum_i \log P(x_i, y_i | \Theta)
\]

If we have partially observed data, \(x_i \) examples, then

\[
L(\Theta) = \sum_i \log P(x_i | \Theta) = \sum_i \log \sum_{y \in Y} P(x_i, y | \Theta)
\]
HMM Training: Caveat

Network structure of HMM is always created by hand
– no algorithm for double-induction of optimal structure and
probabilities has been able to beat simple hand-built
structures.

Question is: How to choose parameter values for \(\pi \), \(a_{ij} \),
and \(b_i(o) \)?

Supervised HMM Training: An Example

We have an HMM with \(N = 2 \), \(K = \{ e, f, g, h \} \)
We see the following paired sequences in training data

\[
\begin{align*}
e/1 & \quad g/2 \\
e/1 & \quad h/2 \\
f/1 & \quad h/2 \\
f/1 & \quad g/2
\end{align*}
\]

Maximum likelihood estimates:
\(\pi_1 = 1.0, \pi_2 = 0.0 \)

for parameters \(a_{ij} \):

<table>
<thead>
<tr>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>i=2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

for parameters \(b_i(o) \):

\[
\begin{align*}
i=1 & \quad 0.5 \quad 0.5 \quad 0 \quad 0 \\
i=2 & \quad 0 \quad 0 \quad 0.5 \quad 0.5
\end{align*}
\]

Note: state 3 is a dummy final state
Supervised HMM Training: The Likelihood Function

Notation:
Say \((x,y) = \{o_1 \ldots o_T, q_1 \ldots q_T\}\), and
\(f(i,j,x,y)\) = number of times state \(j\) follows state \(i\) in \((x,y)\)
\(f(i,x,y)\) = number of times state \(i\) is the initial state in \((x,y)\)
\(f(i,o,x,y)\) = number of times state \(i\) is paired with observation \(o\)

Then
\[
P(x, y) = \prod_{i \in \{1 \ldots N-1\}} \pi_i^{f(i,x,y)} \prod_{i \in \{1 \ldots N-1\}, j \in \{1 \ldots N\}} a_{ij}^{f(i,j,x,y)} \prod_{i \in \{1 \ldots N-1\}, o \in K} b_i(o)^{f(i,o,x,y)}
\]

Supervised HMM Training: The Likelihood Function

If we have training examples \((x_l, y_l)\) for \(l = 1 \ldots m\),
\[
L(\Theta) = \sum_{l=1}^{m} \log P(x_l, y_l)
\]
\[
= \sum_{l=1}^{m} \left(\sum_{i \in \{1 \ldots N-1\}} f(i, x_l, y_l) \log \pi_i + \sum_{i \in \{1 \ldots N-1\}, j \in \{1 \ldots N\}} f(i, j, x_l, y_l) \log a_{ij} + \sum_{i \in \{1 \ldots N-1\}, o \in K} f(i, o, x_l, y_l) \log b_i(o) \right)
\]
Maximizing the Likelihood Function

Maximizing this function gives MLEs:

\[\pi_i = \frac{\sum_l f(i, x_l, y_l)}{\sum_l \sum_k f(k, x_l, y_l)} \]

\[a_{ij} = \frac{\sum_l f(i, j, x_l, y_l)}{\sum_l \sum_k f(i, k, x_l, y_l)} \]

\[b_i(o) = \frac{\sum_l f(i, o, x_l, y_l)}{\sum_l \sum_{o' \in K} f(i, o', x_l, y_l)} \]

Just like our intuitive results

What about the Hidden State Case?

For HMM, cannot compute those counts directly from the observed sequences

Use Baum-Welch algorithm. Intuitions:

Iteratively estimate the counts.

Start with an estimate for \(a_{ij} \) and \(b_k \), iteratively improve the estimates

Special case of Expectation-maximization (EM)

Uses forward and backward probabilities
Recap: Forward Probabilities

Given an input sequence $x_1 \ldots x_T$:

$\alpha_t(i) = P(x_1 \ldots x_t, q_t = i \mid \Theta)$ \hspace{1cm} forward probabilities

Base case:

$\alpha_t(i) = \pi_i b_i(o_i)$ for all i

Recursive case:

$\alpha_t(j) = \sum_i \alpha_{t-1}(i) a_{ij} b_j(o_j)$ for all $j = 1 \ldots N$ and $t = 2 \ldots T$

Forward Procedure

Computation of $\alpha_t(j)$ by summing over all previous values $\alpha_{t-1}(i)$ for all i
The Backward Probability

We define the **backward probability** as follows:

\[
\beta_t(i) = P(o_{t+1}, o_{t+2}, \ldots, o_T | q_t = i, \Phi)
\]

This is the probability of generating partial observations \(O_{t+1}^T\) (from time \(t+1\) to the end), given that the HMM is in state \(i\) at time \(t\) and of course given model \(\Phi\).

We compute it by induction:

- **Initialization:**
 \[
 \beta_T(i) = 1, \quad 1 \leq i \leq N
 \]

- **Induction:**
 \[
 \beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \quad t = T-1..1, \quad 1 \leq i \leq N
 \]

Backward Procedure

Computation of \(\beta_t(i)\) by weighted sum of all successive values \(\beta_{t+1}\)
Intuition for Re-estimation of \(a_{ij} \)

We will estimate \(\hat{a}_{ij} \) via this intuition:

\[
\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}
\]

Numerator intuition:

Assume we had some estimate of probability that a given transition \(i \rightarrow j \) was taken at time \(t \) in observation sequence.

If we knew this probability for each time \(t \), we could sum over all \(t \) to get expected value (count) for \(i \rightarrow j \).

Re-estimation of \(a_{ij} \)

Let \(\gamma_t(i, j) \) be the probability of being in state \(i \) at time \(t \) and state \(j \) at time \(t+1 \), given \(O_{1..T} \) and model \(\Phi \):

\[
\gamma_t(i, j) = P(q_t = i, q_{t+1} = j \mid O, \Phi)
\]

\[
= \frac{P(q_t = i, q_{t+1} = j, O \mid \Phi)}{P(O \mid \Phi)}
\]
Computing Numerator for γ_t

The four components of $P(q_t = i, q_{t+1} = j, O | \Phi) : \alpha, \beta, a_i, b_j$ and $b_j(o_{t+1})$

$\gamma_t(i, j) = P(q_t = i, q_{t+1} = j | O, \Phi)$

$$\gamma_t(i, j) = \frac{P(q_t = i, q_{t+1} = j, O | \Phi)}{P(O | \Phi)}$$

$$= \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_i \alpha_t(i) \beta_t(i)}$$

$P(O|\Phi)$ can use forward only; backward only; or combination of forward and backward
From γ to a_{ij}

- $a_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$
- The expected number of transitions from state i to state j is the sum over all t of γ.
- The total expected number of transitions out of state i is the sum over all transitions out of state i.
- Final formula for reestimated a_{ij}:
 $$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \gamma_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \gamma_t(i, j)}$$

Re-estimating the Observation Likelihood b

- This is the probability of a given symbol v_k from the observation vocabulary V, given a state j: $\hat{b}_j(v_k)$.
 $$\hat{b}_j(v_k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_k}{\text{expected number of times in state } j}$$
- For this we will need to know the probability of being in state j at time t, which we will call $\xi_t(j)$ (ξ for state):
 $$\xi_t(j) = P(q_t = j|O, \Phi)$$
- We compute this by including the observation sequence in the probability and then normalizing:
 $$\xi_t(j) = \frac{P(q_t = j|O, \Phi)}{P(O|\Phi)}$$
Computing ξ

Computation of $\xi_j(t)$, the probability of being in state j at time t.

Reestimating the Observation Likelihood b

$\hat{b}_j(v_k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_k}{\text{expected number of times in state } j}$

For numerator, sum $\xi_j(t)$ for all t in which o_t is symbol v_k.

$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} s.t. O_t = v_k \xi_j(t)}{\sum_{t=1}^{T} \xi_j(t)}$
Summary of A and B

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \gamma_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \gamma_t(i,j)} \]

The ratio between the expected number of transitions from state \(i \) to \(j \) and the expected number of all transitions from state \(i \).

\[\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \mathbb{1}_{s.t. O_t = v_k} \xi_j(t)}{\sum_{t=1}^{T} \xi_j(t)} \]

The ratio between the expected number of times the observation data emitted from state \(j \) is \(v_k \), and the expected number of times any observation is emitted from state \(j \).

Summary: Forward-Backward Algorithm

- Initialize \(\Phi = (A,B,\pi) \)
- Compute \(\alpha, \beta, \xi \)
- Estimate new \(\Phi' = (A,B,\pi) \)
- Replace \(\Phi \) with \(\Phi' \)
- If not converged, go to 2

That’s for one sequence. For multiple sequences, simply add all of them in the numerators and denominators.
Summary: Forward-Backward Algorithm

Also called Baum-Welch algorithm: learning the A and B matrices of an individual HMM
It doesn’t require training data to be labeled at the state level; all you have to know is that an HMM covers a given sequence of observations, and you can learn the optimal A and B parameters for this data by an iterative process.
Baum-Welch only guaranteed to return to local max, rather than global optimum
It is a special case of EM

MLE and EM for Unsupervised HMM Training

Known states:

\[L(\Theta) = \sum_i \log P(x_i, y_i | \Theta) \]

Unsupervised, hidden states:
training examples \((x_i)\) for \(i = 1 \ldots m\)

\[L(\Theta) = \sum_{i=1}^{m} \log \sum_y P(x_i, y | \Theta) \]

The expected complete log likelihood is

\[Q(\Theta, \Theta^{-1}) = \sum_{i=1}^{m} \sum_y P(y | x_i, \Theta^{-1}) \log P(x_i, y | \Theta) \]
EM for HMM Training: A Brute-Force Approach

\[Q(\Theta, \Theta^{(t)}) = \sum_{l=1}^{m} \sum_{y} P(y \mid x_l, \Theta^{(t)}) \left(\sum_{i \in [1..N-1]} f(i, x_l, y) \log \pi_i \right. + \]
\[\left. \sum_{i \in [1..N-1], \ j \in [1..N]} f(i, j, x_l, y) \log a_{ij} + \sum_{i \in [1..N-1], \ o \in K} f(i, o, x_l, y) \log b_i(o) \right) \]
\[= \sum_{l=1}^{m} \sum_{i \in [1..N-1]} g(i, x_l) \log \pi_i + \sum_{i \in [1..N-1], \ j \in [1..N]} g(i, j, x_l) \log a_{ij} + \sum_{i \in [1..N-1], \ o \in K} g(i, o, x_l) \log b_i(o) \]

where each \(g \) is an expected count:

\[g(i, x_l) = \sum_{y} P(y \mid x_l, \Theta^{(t)}) f(i, x_l, y) \]
\[g(i, j, x_l) = \sum_{y} P(y \mid x_l, \Theta^{(t)}) f(i, j, x_l, y) \]
\[g(i, o, x_l) = \sum_{y} P(y \mid x_l, \Theta^{(t)}) f(i, o, x_l, y) \]

Maximizing this log likelihood function gives EM updates:

\[\pi_i = \frac{\sum_{i} g(i, x_l)}{\sum_{i} \sum_{k} g(k, x_l)} \quad a_{ij} = \frac{\sum_{i} g(i, j, x_l)}{\sum_{i} \sum_{k} g(i, k, x_l)} \quad b_i(o) = \frac{\sum_{i} g(i, o, x_l)}{\sum_{i} \sum_{o \in K} g(i, o', x_l)} \]

Compare this to MLEs in supervised case:

\[\pi_i = \frac{\sum_{i} f(i, x_l, y_l)}{\sum_{i} \sum_{k} f(k, x_l, y_l)} \quad a_{ij} = \frac{\sum_{i} f(i, j, x_l, y_l)}{\sum_{i} \sum_{k} f(i, k, x_l, y_l)} \quad b_i(o) = \frac{\sum_{i} f(i, o, x_l, y_l)}{\sum_{i} \sum_{o \in K} f(i, o', x_l, y_l)} \]
Unsupervised HMM Training: An Example

We have an HMM with $N = 3$, $K = \{e, f, g, h\}$

We see the following output sequences in training data:

- e g
- e h
- f h
- f g

How would you choose parameter values for π, a_{ij}, and $b_i(o)$?

Four possible state sequences for the first example (e, g):

- $e/1$ g/1 $\pi_1 a_{11} a_{13} b_1(e) b_1(g)$
- $e/1$ g/2 $\pi_1 a_{12} a_{23} b_1(e) b_2(g)$
- $e/2$ g/1 $\pi_2 a_{21} a_{13} b_2(e) b_1(g)$
- $e/2$ g/2 $\pi_2 a_{22} a_{23} b_2(e) b_2(g)$
Unsupervised HMM Training: An Example

To apply EM, we need to initialize our parameters. Say we have the following initial parameter values:

\[\pi_1 = 0.35, \pi_2 = 0.3, \pi_3 = 0.35 \]

<table>
<thead>
<tr>
<th>(a_{ij})</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(b_i(o))</th>
<th>(o=e)</th>
<th>(o=f)</th>
<th>(o=g)</th>
<th>(o=h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i=1)</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>(i=1)</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>(i=2)</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>(i=2)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

A different probability for each state sequence:

- e/1 g/1 \(\pi_1 a_{11} a_{13} b_1(e) b_1(g) = 0.0021 \)
- e/1 g/2 \(\pi_1 a_{12} a_{23} b_1(e) b_2(g) = 0.00315 \)
- e/2 g/1 \(\pi_2 a_{21} a_{13} b_2(e) b_1(g) = 0.00135 \)
- e/2 g/2 \(\pi_2 a_{22} a_{23} b_2(e) b_2(g) = 0.0009 \)

Each state sequence has a different conditional probability, e.g.:

\[
P(1 \mid e, g, \Theta) = \frac{0.0021}{0.0021 + 0.00315 + 0.00135 + 0.0009} = 0.28
\]

- e/1 g/1 \(P(1 \mid e, g, \Theta) = 0.28 \)
- e/1 g/2 \(P(2 \mid e, g, \Theta) = 0.42 \)
- e/2 g/1 \(P(2 \mid e, g, \Theta) = 0.18 \)
- e/2 g/2 \(P(2 \mid e, g, \Theta) = 0.12 \)
EM for Unsupervised HMM Training (E-Step)

Fill in hidden values for (e g), (e h), (f h), (f g)

<table>
<thead>
<tr>
<th>State 1</th>
<th>State 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e/1 g/1</td>
<td>(P(1,1</td>
</tr>
<tr>
<td>e/1 g/2</td>
<td>(P(1,2</td>
</tr>
<tr>
<td>e/2 g/1</td>
<td>(P(2,1</td>
</tr>
<tr>
<td>e/2 g/2</td>
<td>(P(2,2</td>
</tr>
<tr>
<td>e/1 h/1</td>
<td>(P(1,1</td>
</tr>
<tr>
<td>e/1 h/2</td>
<td>(P(1,2</td>
</tr>
<tr>
<td>e/2 h/1</td>
<td>(P(2,1</td>
</tr>
<tr>
<td>e/2 h/2</td>
<td>(P(2,2</td>
</tr>
<tr>
<td>f/1 h/1</td>
<td>(P(1,1</td>
</tr>
<tr>
<td>f/1 h/2</td>
<td>(P(1,2</td>
</tr>
<tr>
<td>f/2 h/1</td>
<td>(P(2,1</td>
</tr>
<tr>
<td>f/2 h/2</td>
<td>(P(2,2</td>
</tr>
<tr>
<td>f/1 g/1</td>
<td>(P(1,1</td>
</tr>
<tr>
<td>f/1 g/2</td>
<td>(P(1,2</td>
</tr>
<tr>
<td>f/2 g/1</td>
<td>(P(2,1</td>
</tr>
<tr>
<td>f/2 g/2</td>
<td>(P(2,2</td>
</tr>
</tbody>
</table>

EM for Unsupervised HMM Training (E-Step)

Calculate the expected counts, for \(a_{ij} \pi \):

\[
\begin{align*}
\sum_l g(1,1, x_l) &= 0.28 + 0.211 + 0.181 + 0.237 = 0.910 \\
\sum_l g(1,2, x_l) &= 1.72 \\
\sum_l g(2,1, x_l) &= 0.746 \\
\sum_l g(2,2, x_l) &= 0.626 \\
\sum_l g(1,3, x_l) &= 1.656 \\
\sum_l g(2,3, x_l) &= 2.344 \\
\sum_l g(1, x_l) &= 0.28 + 0.42 + 0.211 + 0.508 + 0.181 + 0.434 + 0.237 + 0.356 = 2.628 \\
\sum_l g(2, x_l) &= 1.372 \\
\sum_l g(3, x_l) &= 0.0
\end{align*}
\]
EM for Unsupervised HMM Training (E-Step)

Calculate the expected counts, for $b_i(o)$:

$$
\sum g(l, e, x_i) = 0.28 + 0.42 + 0.211 + 0.508 = 1.4
$$

$$
\sum g(l, f, x_i) = 1.209
$$

$$
\sum g(l, g, x_i) = 0.941
$$

$$
\sum g(l, h, x_i) = 0.827
$$

$$
\sum g(2, e, x_i) = 0.6
$$

$$
\sum g(2, f, x_i) = 0.385
$$

$$
\sum g(2, g, x_i) = 1.465
$$

$$
\sum g(2, h, x_i) = 1.173
$$

EM for Unsupervised HMM Training: M-Step

Calculate the new estimates:

$$
\pi_i = \frac{\sum g(l, 1, x_i) + \sum g(l, 2, x_i) + \sum g(l, 3, x_i)}{2.628 + 1.372 + 0.91} = 0.657
$$

$$
\alpha_{11} = \frac{\sum g(l, 1, x_i) + \sum g(l, 2, x_i) + \sum g(l, 3, x_i)}{2.628 + 1.372 + 0.91} = 0.21
$$

<table>
<thead>
<tr>
<th>a_{ij}</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td>0.212</td>
<td>0.401</td>
<td>0.387</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0.201</td>
<td>0.169</td>
<td>0.631</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$b(o)$</th>
<th>$o=e$</th>
<th>$o=f$</th>
<th>$o=g$</th>
<th>$o=h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td>0.320</td>
<td>0.276</td>
<td>0.215</td>
<td>0.189</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0.166</td>
<td>0.106</td>
<td>0.404</td>
<td>0.324</td>
</tr>
</tbody>
</table>
EM for Unsupervised HMM Training

Iterate the E-step and M-step 3 times:
\[\pi_1 = 0.9986, \pi_2 = 0.00138, \pi_3 = 0 \]

<table>
<thead>
<tr>
<th>(a_{ij})</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i=1)</td>
<td>0.0054</td>
<td>0.9896</td>
<td>0.00543</td>
</tr>
<tr>
<td>(i=2)</td>
<td>0.0</td>
<td>0.0013627</td>
<td>0.9986</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b(o))</th>
<th>(o=e)</th>
<th>(o=f)</th>
<th>(o=g)</th>
<th>(o=h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i=1)</td>
<td>0.497</td>
<td>0.497</td>
<td>0.00258</td>
<td>0.00272</td>
</tr>
<tr>
<td>(i=2)</td>
<td>0.001</td>
<td>0.000189</td>
<td>0.4996</td>
<td>0.4992</td>
</tr>
</tbody>
</table>

Problem with the Brute-Force Approach

Inefficient! When computing the expected counts, we have an exponential number of terms in the summation!

\[
g(i, x_i) = \sum_y P(y \mid x_i, \Theta^{i-1}) f(i, x_i, y)
\]

\[
g(i, j, x_i) = \sum_y P(y \mid x_i, \Theta^{i-1}) f(i, j, x_i, y)
\]

\[
g(i, o, x_i) = \sum_y P(y \mid x_i, \Theta^{i-1}) f(i, o, x_i, y)
\]

Fortunately, there is a way of avoiding this brute force strategy with HMMs, using the dynamic programming algorithm: **Baum-Welch algorithm**.

Aim is to efficiently calculate these expected counts
The Forward and Backward Probabilities

Suppose we could calculate the following quantities, given an input sequence $x_1 \ldots x_T$:

- Forward probabilities:
 \[\alpha_t(i) = P(x_1 \ldots x_t, s_t = i \mid \Theta) \]
 \[\beta_t(i) = P(x_{t+1} \ldots x_T \mid s_t = i, \Theta) \]

- Backward probabilities:

The probability of being in state i at time t, is

\[p_t(i) = P(s_t = i \mid x_1 \ldots x_T, \Theta) = \frac{P(s_t = i, x_1 \ldots x_T \mid \Theta)}{P(x_1 \ldots x_T \mid \Theta)} = \frac{\alpha_t(i) \beta_t(i)}{P(x_1 \ldots x_T \mid \Theta)} \]

Also,

\[P(x_1 \ldots x_T \mid \Theta) = \sum_i \alpha_t(i) \beta_t(i) \text{ for any } t \]

Expected Initial Counts

As before,

\[g(i, x_1 \ldots x_T) = \text{expected number of times state } i \text{ is state 1} \]

We can calculate this as

\[g(i, x_1 \ldots x_T) = p_1(i) \]
Expected Emission Counts

As before,
\[g(i, o, x_1 \ldots x_T) = \text{expected number of times state } i \text{ emits the symbol } o \]

We can calculate this as
\[g(i, o, x_1 \ldots x_T) = \sum_{x_t = o} p_t(i) \]

Expected Transition Counts

As before,
\[g(i, j, x_1 \ldots x_T) = \text{expected number of times state } j \text{ follows state } i \]

We can calculate this as
\[g(i, j, x_1 \ldots x_T) = \sum_{t} \gamma_t(i, j) \]
Viterbi Training

An alternative to Baum-Welch training.

The most probable paths for the training sequences are derived using Viterbi algorithm, and these are used in the re-estimation process.

The process is also iterated when the new parameter values are obtained.

Stopping criteria: None of the paths change. At this point, the parameter estimates will not change either, since they are determined completely by the paths.

Viterbi Training

Difference between Baum-Welch and Viterbi training:

Total possibility vs. best path

Baum-Welch maximizes \(\log P(x_1, x_2, x_3, \ldots, x_n | \Theta) \), while Viterbi maximizes the contribution to the likelihood \(\log P(x_1, x_2, x_3, \ldots, x_n | \Theta, p^*(x_1), \ldots, p^*(x_n)) \) from the most probable paths for all the sequences.

Viterbi training performs less well in general than Baum-Welch.
Three Problems in Hidden Markov Models

• Question 1: Evaluation
 What is the probability of the observation sequence \(O_1, O_2 \ldots O_T \), \(P(O_1, O_2 \ldots O_T | \lambda) \)?

• Question 2: Most Probable Path
 Given \(O_1, O_2 \ldots O_T \), what is the most probable path that I took?

• Question 3: Learning HMMs:
 Given \(O_1, O_2 \ldots O_T \), what is the maximum likelihood HMM that could have produced this string of observations?

Basic Operations in HMMs

For an observation sequence \(O = O_1, \ldots, O_T \), the three basic HMM operations are:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation: Calculating</td>
<td>Forward</td>
<td>(O(TN^2))</td>
</tr>
<tr>
<td>(P(O_1, O_2 \ldots O_T</td>
<td>\lambda))</td>
<td>Backward</td>
</tr>
<tr>
<td>Inference: Computing (</td>
<td>Viterbi decoding</td>
<td></td>
</tr>
<tr>
<td>(Q^* = \text{argmax} P(Q</td>
<td>O))</td>
<td></td>
</tr>
<tr>
<td>Learning: Computing (</td>
<td>Baum-Welch (EM)</td>
<td></td>
</tr>
<tr>
<td>(\lambda^* = \text{argmax} P(O</td>
<td>\lambda))</td>
<td></td>
</tr>
</tbody>
</table>

\(T = \# \text{ timesteps}, N = \# \text{ states} \)
Summary

• What is an HMM
• Computing (and defining) forward and backward probabilities
• The Viterbi algorithm
• To be happy with the kind of math and analysis needed for HMMs
• Training HMM: understand concepts of forward-backward algorithm