Supervised Classification

• Classifiers so far:
 – Decision tree, nearest neighbor, neural nets, naïve bayes
 – Classification is done for instances separately

• What if there is a dependency between instances?
 – e.g., Label each word in a sentence with its part-of-speech tag
A Markov System

Has N states, called s_1, s_2, \ldots, s_N

There are discrete timesteps, $t=0, t=1, \ldots$

$N=3$
$t=0$
$q_t=q_0=s_3$

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note: $q_t \in \{s_1, s_2, \ldots, s_N\}$
A Markov System

Has N states, called s_1, s_2, \ldots, s_N

There are discrete timesteps, $t=0, t=1, \ldots$

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note: $q_t \in \{s_1, s_2, \ldots, s_N\}$

Between each timestep, the next state is chosen randomly.

$N = 3$
$t=1$
$q_t = q_1 = s_2$

The current state determines the probability distribution for the next state.
A Markov System

Has N states, called s_1, s_2, \ldots, s_N
There are discrete timesteps, $t=0, t=1, \ldots$
On the t'th timestep the system is in exactly one of the available states. Call it q_t
Note: $q_t \in \{s_1, s_2, \ldots, s_N\}$
Between each timestep, the next state is chosen randomly.
The current state determines the probability distribution for the next state.

Formally: First-order Markov Model

A set of states $Q = q_1, q_2, \ldots q_N$, the state at time t is q_t
Current state only depends on previous state

$$P(q_t | q_1 \ldots q_{t-1}) = P(q_t | q_{t-1})$$

Transition probability matrix A

$$a_{ij} = P(q_t = j | q_{t-1} = i) \quad 1 \leq i, j \leq N$$

Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \leq i \leq N$$

Constraints:

$$\sum_{j=1}^{N} a_{ij} = 1; \quad 1 \leq i \leq N \quad \sum_{j=1}^{N} \pi_j = 1$$
Probability of a Sequence of States

\[P(s_1s_2s_3\ldots s_T) = P(s_1) \times P(s_2 \mid s_1) \times \ldots \times P(s_T \mid s_1s_2s_3\ldots s_{T-1}) \]

\[= P(s_1) \times P(s_2 \mid s_1) \times \ldots \times P(s_T \mid s_{T-1}) \]

\[= \pi \prod_{t=1}^{T-1} a_{s_ts_{t+1}} \]

Note: I’m being sloppy about the starting time 0 or 1.

What is \(P(q_t = s) \)? Slow, Stupid Answer

Step 1: Work out how to compute \(P(Q) \) for any path \(Q \) of length \(t \) (i.e., \(Q = q_1 q_2 q_3 \ldots q_t \))

\[P(q_1 q_2 \ldots q_t) = P(q_1)P(q_2|q_1)P(q_3|q_2)\ldots P(q_t|q_{t-1}) \]

Step 2: Use this knowledge to get \(P(q_t = s) \)

\[P(q_t = s) = \sum_{Q=\text{Paths of length } t \text{ that end in } s} P(Q) \]

Computation is exponential in \(t \)
What is $P(q_t = s)$? Clever Answer

• For each state s_i,
 define $p_t(i) = \text{Prob. state is } s_i \text{ at time } t$
 $= P(q_t = s_i)$

• Easy to do inductive definition

$\forall i \quad p_0(i) =$

$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$

Or get probs from π
What is $P(q_t = s)$? Clever Answer

• For each state s_i

 define $p_t(i) = \text{Prob. state is } s_i \text{ at time } t = P(q_t = s_i)$

• Easy to do inductive definition

$$
\forall i \quad p_0(i) = \begin{cases}
1 & \text{if } s_i \text{ is the start state} \\
0 & \text{otherwise}
\end{cases}
$$

$$
\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =
\sum_{i=1}^{N} P(q_{t+1} = s_j \wedge q_t = s_i) =
\sum_{i=1}^{N} P(q_{t+1} = s_j | q_t = s_i) P(q_t = s_i) =
\sum_{i=1}^{N} a_{ij} p_t(i)
$$

Or get probs from π

Remember,

$$a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$$
What is $P(q_t = s)$? Clever Answer

• For each state s_i, define $p_t(i) = \text{Prob. state is } s_i \text{ at time } t = P(q_t = s_i)$

• Easy to do inductive definition

 $\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$

 $\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) = \sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) = \sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_j p_i(i)$

Cost of computing $P_t(i)$ for all states S_i is now $O(t N^2)$

The stupid way was $O(N^t)$

This was a simple example

It uses a trick, called **Dynamic Programming**.
Example

Initialize $p_t(j)

\[p_t(j) = \sum_{i=1}^{N} \alpha_{ij} p_{t-1}(i) \]

<table>
<thead>
<tr>
<th>$p_1(3)$</th>
<th>$p_2(3)$</th>
<th>$p_3(3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_1(2)$</td>
<td>$p_2(2)$</td>
<td>$p_3(2)$</td>
</tr>
<tr>
<td>$p_1(1)$</td>
<td>$p_2(1)$</td>
<td>$p_3(1)$</td>
</tr>
</tbody>
</table>

Assume that the state is not directly observable but that the observation is a probabilistic function of the state.

For example, assume that there are N urns each containing balls of different colors with a specific distribution for each urn. An initial urn is chosen at random and a ball is drawn, its color announced and replaced. The next urn is chosen randomly based on the current urn and the process repeats.
HMM Formalism

\{S, O, \Pi, A, B\}

\Pi = \{\pi_i\} are the initial state probabilities

\(A = \{a_{ij}\}\) are the state transition probabilities

\(B = \{b_{ik}\}\) are the observation probabilities

HMM Formal Definition

An HMM, \(\lambda\), is a 5-tuple consisting of

- \(N\) the number of states
- \(M\) the number of possible observations

- \(\{\pi_1, \pi_2, \ldots, \pi_N\}\) The starting state probabilities:
 \[P(q_0 = S_i) = \pi_i\]

- \(\{a_{ij}\}\) The state transition probabilities:
 \[P(q_t = S_j | q_{t-1} = S_i) = a_{ij}\]

- \(\{b_{ik}\}\) The observation probabilities:
 \[P(O_t = k | q_{t} = S_i) = b_{ik}\]
HMM Notation

The states are labeled $S_1 \ S_2 \ldots \ S_N$.

For a particular trial:
- Let T be the number of observations.
- T is also the number of states passed through.

$O = O_1 \ O_2 \ldots O_T$ is the sequence of observations.
$Q = q_1 \ q_2 \ldots q_T$ is the notation for a path of states.

HMMs: An Example

Start randomly in state 1 or 2.
Choose one of the output symbols in each state at random.

\[
\begin{array}{c}
N = 3 \\
M = 3 \\
\pi_1 = 1/2 \\
\pi_2 = 1/2 \\
\pi_3 = 0 \\
a_{11} = 0 \\
a_{12} = 1/3 \\
a_{13} = 2/3 \\
a_{21} = 1/3 \\
a_{22} = 0 \\
a_{23} = 2/3 \\
a_{31} = 1/3 \\
a_{32} = 1/3 \\
a_{33} = 1/3 \\
b_1(X) = 1/2 \\
b_1(Y) = 1/2 \\
b_1(Z) = 0 \\
b_2(X) = 0 \\
b_2(Y) = 1/2 \\
b_2(Z) = 1/2 \\
b_3(X) = 1/2 \\
b_3(Y) = 0 \\
b_3(Z) = 1/2 \\
\end{array}
\]
HMMs: An Example

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let's generate a sequence of
observations:

\[
\begin{align*}
q_0 & = _ & o_0 & = _ \\
q_1 & = _ & o_1 & = _ \\
q_2 & = _ & o_2 & = _
\end{align*}
\]

\[
\begin{align*}
q_0 & = _ & o_0 & = _ \\
q_1 & = _ & o_1 & = _ \\
q_2 & = _ & o_2 & = _
\end{align*}
\]

\[
\begin{align*}
q_0 & = _ & o_0 & = _ \\
q_1 & = _ & o_1 & = _ \\
q_2 & = _ & o_2 & = _
\end{align*}
\]
HMMs: An Example

Let's generate a sequence of observations:

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

Goto S_3 with probability 2/3 or S_2 with prob. 1/3

HMMs: An Example

Let's generate a sequence of observations:

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

50-50 choice between Z and X
HMMs: An Example

N = 3
M = 3
π₁ = 1/2
π₂ = 1/2
π₃ = 0

a₁₁ = 0
a₁₂ = 1/3
a₁₃ = 2/3
a₂₁ = 1/3
a₂₂ = 0
a₂₃ = 2/3
a₃₁ = 1/3
a₃₂ = 1/3
a₃₃ = 1/3

b₁(X) = 1/2
b₁(Y) = 1/2
b₁(Z) = 0
b₂(X) = 0
b₂(Y) = 1/2
b₂(Z) = 1/2
b₃(X) = 1/2
b₃(Y) = 0
b₃(Z) = 1/2

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

Let's generate a sequence of observations:

Each of the three next states is equally likely

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

Let's generate a sequence of observations:

50-50 choice between Z and X
HMMs: An Example

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

Let’s generate a sequence of observations:

This is what the observer has to work with …

N = 3
M = 3
π₁ = 1/2 π₂ = 1/2 π₃ = 0

a₁₁ = 0 a₁₂ = 1/3 a₁₃ = 2/3
a₂₁ = 1/3 a₂₂ = 0 a₂₃ = 2/3
a₃₁ = 1/3 a₃₂ = 1/3 a₃₃ = 1/3

b₁(X) = 1/2 b₁(Y) = 1/2 b₁(Z) = 0
b₂(X) = 0 b₂(Y) = 1/2 b₂(Z) = 1/2
b₃(X) = 1/2 b₃(Y) = 0 b₃(Z) = 1/2

q₀ = S₁ O₀ = X
q₁ = S₃ O₁ = X
q₂ = S₃ O₂ = Z
Three Problems in Hidden Markov Models

• **Question 1: Evaluation**
 What is the probability of the observation sequence $O_1 O_2 \ldots O_T$, $P(O_1 O_2 \ldots O_T | \lambda)$?

• **Question 2: Most Probable Path**
 Given O_1, O_2, \ldots, O_T, what is the most probable path that I took?

• **Question 3: Learning HMMs:**
 Given O_1, O_2, \ldots, O_T, what is the maximum likelihood HMM that could have produced this string of observations?

Basic Operations in HMMs

For an observation sequence $O = O_1, \ldots, O_T$, the three basic HMM operations are:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculating $P(O_1 O_2 \ldots O_T</td>
<td>\lambda)$</td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backward</td>
</tr>
<tr>
<td>Inference:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computing $Q^* = \arg\max P(Q</td>
<td>O)$</td>
<td>Viterbi decoding</td>
</tr>
<tr>
<td>Learning:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computing $\lambda^* = \arg\max P(O</td>
<td>\lambda)$</td>
<td>Baum-Welch (EM)</td>
</tr>
</tbody>
</table>

$T = \#$ timesteps, $N = \#$ states
Computing prob. of a series of observations

What is \(P(O) = P(O_1 \; O_2 \; O_3) = P(O_1 = X \; O_2 = X \; O_3 = Z)? \)

Slow, stupid way:

\[
P(O) = \sum_{Q \text{ paths of length 3}} P(O \land Q) = \sum_{Q \text{ paths of length 3}} P(O \mid Q)P(Q)
\]

How do we compute \(P(Q) \) for an arbitrary path \(Q? \)

How do we compute \(P(O \mid Q) \) for an arbitrary path \(Q? \)

P(Q) = P(q_1, q_2, q_3)
= P(q_1) P(q_2 \mid q_1) P(q_3 \mid q_2, q_1) (\text{chain rule})
= P(q_1) P(q_2 \mid q_1) P(q_3 \mid q_2) \text{ (why?)}

Example in the case \(Q = S_1 \; S_3 \; S_3 \):
= 1/2 \times 2/3 \times 1/3 = 1/9
Computing prob. of a series of observations

What is \(P(O) = P(O_1 O_2 O_3) = P(O_1 = X \land O_2 = X \land O_3 = Z) \)?

Slow, stupid way:

\[
P(O) = \sum_{Q: \text{Paths of length 3}} P(O \land Q) = \sum_{Q: \text{Paths of length 3}} P(O|Q)P(Q)
\]

How do we compute \(P(Q) \) for an arbitrary path \(Q \)?

How do we compute \(P(O|Q) \) for an arbitrary path \(Q \)?

Example in the case \(Q = S_1 S_3 S_3 \):

\[
P(O|Q) = P(O_1|q_1)P(O_2|q_2)P(O_3|q_3) = 1/2 \times 1/2 \times 1/2 = 1/8
\]

P(\(O \)) would need 27 P(\(Q \)) computations and 27 P(\(O|Q \)) computations

A sequence of 20 observations would need \(3^{20} = 3.5 \times 10^6 \) computations and

3.5 billion P(\(O|Q \)) computations

So let's be smarter.
The Prob. of a given series of observations, non-exponential-cost-style

Given observations $O_1 O_2 \ldots O_T$
Define
\[\alpha_t(i) = \Pr(O_1 O_2 \ldots O_t \land q_t = S_i \mid \lambda) \quad \text{where } 1 \leq t \leq T \]

\[\alpha_t(i) = \text{Probability that, in a random trial,} \]
\[\cdot \text{We'd have seen the first } t \text{ observations} \]
\[\cdot \text{We'd have ended up in } S_i \text{ as the } t'\text{th state visited.} \]

Defining $\alpha_t(i)$ Recursively

\[\alpha_t(i) = \Pr(O_1 O_2 \ldots O_t \land q_t = S_i \mid \lambda) \]

\begin{align*}
\alpha_t(i) &= \Pr(O_t \land q_t = S_i) \\
&= \Pr(g_t = S_i) \Pr(o_t \mid q_t = S_i) \\
&= \text{what?} \\
\alpha_{t+1}(j) &= \Pr(o_{t+1} \land q_{t+1} = S_j) \\
&= \sum_i \Pr(o_{t+1} \land q_{t+1} = S_j) \Pr(o_{t+1} \land q_{t+1} = S_j) \\
&= \sum_i \Pr(o_{t+1} = S_j) \Pr(o_{t+1} \land q_{t+1} = S_j) \\
&= \sum_i \Pr(o_{t+1} = S_j) \Pr(q_{t+1} = S_j) \alpha_t(i) \\
&= \sum_i \Pr(q_{t+1} = S_j) \Pr(o_{t+1} = S_j) \alpha_t(i) \\
&= \sum_i \alpha_t(i) \Pr(o_{t+1} \mid q_{t+1} = S_j) \\
&= \sum_i \alpha_t(i) b_j(o_{t+1}) \alpha_{t}(i)
\end{align*}
Forward Procedure

Computation of $\alpha_t(j)$ by summing all previous values $\alpha_{t-1}(i)$ for all i

In our example ...

$$\alpha_t(i) = p(O_1O_2..O_t \land q_t = S_j^z)$$
$$\alpha_t(i) = b_j(O_t)\pi_i$$
$$\alpha_{t+1}(j) = \sum_i a_{ij}b_j(O_{t+1})\alpha_t(i)$$

We saw $O_1O_2O_3 = X \times X$
Easy Questions

We can cheaply compute
\[\alpha_t(i) = P(O_1 O_2 \ldots O_t \land q_t = S_i) \]

How can we cheaply compute
\[P(O_1 O_2 \ldots O_t) ? \]

(How) can we cheaply compute
\[P(q_t = S_i \mid O_1 O_2 \ldots O_t)? \]

The Forward Procedure

Forward variables are calculated as follows:
\[\alpha_t(i) = P(O_i O_{i+1} \ldots O_T \mid q_i = S_i) \]

Initialization:
\[\alpha_1(i) = b_i(O_1) \pi_i \]

Induction:
\[\alpha_{t+1}(j) = \sum_i a_{ij} b_j(O_{t+1}) \alpha_t(i) \]

Total: \[P(O_1 O_2 \ldots O_T \mid \lambda) = \Sigma_{i=1,N} \alpha_T(i) \]

This algorithm requires \(O(N^2 T) \) multiplications --- much less than the direct method which takes \(O(T N^T) \)

Note: we will discuss backward procedure later
Three Problems in Hidden Markov Models

- Question 1: Evaluation
 What is the probability of the observation sequence $O_1O_2 \ldots O_T$, $P(O_1O_2 \ldots O_T | \lambda)$?

- Question 2: Most Probable Path
 Given $O_1O_2 \ldots O_T$, what is the most probable path that I took?

- Question 3: Learning HMMs:
 Given $O_1O_2 \ldots O_T$, what is the maximum likelihood HMM that could have produced this string of observations?

Most Probable Path Given Observations

What is the most probable path given $O_1O_2 \ldots O_T$ i.e.,
What is $\arg\max_Q p(Q|O_1O_2 \ldots O_T)$?

Slow, stupid answer:

$$\arg\max_Q p(Q|O_1O_2 \ldots O_T)$$

$$= \arg\max_Q \frac{p(O_1O_2 \ldots O_T | Q)p(Q)}{p(O_1O_2 \ldots O_T)}$$

$$= \arg\max_Q p(O_1O_2 \ldots O_T | Q)p(Q)$$
Efficient MPP Computation

We’re going to compute the following variables:

\[\delta_t(i) = \max_{q_1q_2...q_{t-1}} P(q_1, q_2, .. q_{t-1}, q_t = S_i, O_1..O_t) \]

= The probability of the path of length t-1 with the maximum chance of doing all these things:

...OCCURRING
and
...ENDING UP IN STATE S_i
and
...PRODUCING OUTPUT O_1...O_t

Define: \(\text{mpp}_t(i) = \) that path

So: \(\delta_t(i) = \text{Prob}(\text{mpp}_t(i)) \)

The Viterbi Algorithm

\[\delta_t(i) = \max_{q_1q_2...q_{t-1}} P(q_1q_2...q_{t-1} \land q_t = S_i \land O_1...O_t) \]

\[\text{mpp}_t(i) = \max_{q_1q_2...q_{t-1}} P(q_1q_2...q_{t-1} \land q_t = S_i \land O_1...O_t) \]

\[\delta_t(i) = \text{one choice } P(q_t = S_i \land O_t) \]
\[= P(q_t = S_i)P(O_t|q_t = S_i) \]
\[= \pi_{S_i}b_i(O_t) \]

Now, suppose we have all the \(\delta_t(i) \)'s and \(\text{mpp}_t(i) \)'s for all i.

HOW TO GET \(\delta_{t+1}(j) \) and \(\text{mpp}_{t+1}(j) \)?

\[\text{mpp}_1(1) \]
\[\text{mpp}_1(2) \]
\[\vdots \]
\[\text{mpp}_1(N) \]

\[\text{mpp}_t(1) \]
\[\text{mpp}_t(2) \]
\[\vdots \]
\[\text{mpp}_t(N) \]
The Viterbi Algorithm

The most prob path with last two states S_i, S_j is the most prob path to S_i, followed by transition $S_i \rightarrow S_j$.

What is the prob of that path?

$$\delta_t(i) \times P(S_i \rightarrow S_j \wedge O_{t+1} \mid \lambda) = \delta_t(i) a_{ij} b_j (O_{t+1})$$

So, the most probable path to S_j has S_i^* as its penultimate state where $i^* = \arg \max_i \delta_t(i) a_{ij} b_j (O_{t+1})$.
The Viterbi Algorithm

The most prob path with last two states S_i, S_j

is

the most prob path to S_i,
followed by transition $S_i \rightarrow S_j$

What is the prob of that path?

$\delta(t)(i) \times P(S_i \rightarrow S_j \land O_{t+1} \mid \lambda) = \delta(t)(i) a_{ij} b_j(O_{t+1})$

So, the most probable path to S_j

S_i^* as its penultimate state

where $i^* = \operatorname{argmax}_i \delta(t)(i) a_{ij} b_j(O_{t+1})$

Summary:

$\delta_{t+1}(j) = \delta_t(i^*) a_{ij} b_j(O_{t+1})$

$mpp_{t+1}(j) = mpp_t(i^*) S_i^*$

with i^* defined to the left

The Viterbi Algorithm

- The Idea: Just like Forward, fold exponential paths into a simple trellis, so that all possible paths will remerge into N states at every time slice.

- We define the viterbi probability as follows:

 $v_t(i) = P(o_0 o_1 \cdots o_t, q_{t-1}, q_t = i \Phi)$

 $v_t(i)$ is the probability that the HMM Φ is in state i at time t having generated partial observation o_t by passing through the most likely state sequence q_{t-1}.

- We again compute it by induction:

 - Initialization:

 $v_1(i) = \pi_i b_i(o_1), 1 \leq i \leq N$

 $b_{t_1}(i) = 0$

 - Induction:

 $v_t(j) = \max_{1 \leq i \leq N} v_{t-1}(i) a_{ij} b_{j}(o_t)$,
The Viterbi Algorithm

\[2 \leq t \leq T, 1 \leq j \leq N \]
\[b_t(j) = \left[\arg \max_{1 \leq i \leq N} v_{t-1}(i) a_{ij} \right], \]
\[2 \leq t \leq T, 1 \leq j \leq N \]

- Termination: The best score is \(\max_{1 \leq i \leq N} v_T(i) \)

\[q_T^* = \arg \max_{1 \leq i \leq N} b_T(i) \]

- Backtracking

\[q_t^* = b_{t+1}(q_{t+1}^*) ; t = T - 1, T - 2, ..., 1 \]

\[Q^* = (q_1^*, q_2^*, ..., q_T^*) \text{ is the best state sequence} \]
Example

We saw $O_1 \ O_2 \ O_3 = X \ Z \ Y$

What’s Viterbi Used for?

Classic example: Speech recognition

Goal: Signal \rightarrow words

An HMM approach:
 \rightarrow observable is signal
 \rightarrow Hidden state is phone or part of word formation

What is the most probable word given this signal?

Part-of-speech tagging:
 Given a sentence (observations), find the most likely POS tag sequence.
What You Should Know

• What is an HMM?
• Computing (and defining) \(\alpha_t(i) \)
• The Viterbi algorithm
• To be happy with the kind of math and analysis needed for HMMs
• Further reading: