Lecture 1
Introduction to NLP

CS 6320
Outline

- NLP related areas
- NLP Applications
- Why is NLP difficult?
- NLP Pipeline
- NLP Resources
Definition

- NLP is a technology that creates and implements computer models for the purpose of performing various natural language tasks. It is used for building NL interfaces to databases, machine translation, and others.
- NLP is playing an increasing role in curbing the information explosion on Internet, Government, and corporate America.
Related areas

- NLP is a difficult, and largely unsolved problem. One reason for this is its **multidisciplinary** nature:
 - **Linguistics**: How words, phrases, and sentences are formed.
 - **Psycholinguistics**: How people understand and communicate using human language.
 - **Computational linguistics**: Deals with models and computational aspects of NL (e.g. algorithms).
Related areas

- **Philosophy**: relates to the semantics of language; notion of meaning, how words identify objects. NLP requires considerable knowledge about the world.

- **Computer science**: model formulation and implementation using modern methods.

- **Artificial intelligence**: issues related to knowledge representation and reasoning.

- **Statistics**: many NLP problems are modeled using probabilistic models.

- **Machine learning**: automatic learning of rules and procedures based on lexical, syntactic and semantic features.

- **NL Engineering**: implementation of large, realistic systems. Modern software development methods play an important role.
NLP Applications

- **Text-based applications:**
 - Finding documents on certain topics (document classification)
 - Information retrieval: search for key words or concepts,
 - Information extraction: extract information related to key words,
 - Complete understanding of texts: requires a deep structure analysis,
 - Translation from a language to another,
 - Summarization,
 - Knowledge acquisition.

- **Dialogue-based applications** (involve human-machine communication):
 - Question-answering
 - Tutoring systems
 - Problem solving.

- **Speech processing**
Basic levels of language processing 1/2

- **Phonetic** - how words are related to the sounds that realize them. Essential for speech processing.

- **Morphological Knowledge** - how words are constructed: e.g., friend, friendly, unfriendly, friendliness.

- **Syntactic Knowledge** - how words can be put together to form correct sentences, and the role of each play in the sentence. e.g.:

 John ate the cake.

- **Semantic Knowledge** - Words and sentence meaning:

 They saw a log.
 They saw a log yesterday.
 He saws a log.
Basic levels of language processing 2/2

- **Pragmatic Knowledge** - how sentences are used in different situations(or contexts).

 Mary grabbed her umbrella.

 a) It is a cloudy day.

 b) She was afraid of dogs.

- **Discourse Knowledge** - how the meaning of words and sentences is affected by the preceding sentences; pronoun resolution.

 John gave his bike to Bill.

 He didn't care much for it anyway.

- **World Knowledge** - the vast amount of knowledge necessary to understand texts. Used to identify beliefs, goals.

- **Language generation** - have the machine generate coherent text or speech. Needs planning.
Examples of NLP difficulties 1/4

A major difficulty is *lexical ambiguity*. There are three types:

- **Structural ambiguity** - when a sentence has more than one possible parse structures; e.g. attachment:

 John saw the boy in the park with a telescope.
Examples of NLP difficulties 2/4

```
S
  NP
    John
    saw
    the
    boy

VP
  Art
  N
    in the park
    PP
      with a telescope
```
Examples of NLP difficulties 3/4

- **Syntactic ambiguity** - when a word has more than one part of speech:

 Rice flies like sand.

 Note that these syntactic ambiguities lead to different parse structures. Sometimes it is possible to use grammar rules (like subject verb agreement) to disambiguate:

 Flying planes are dangerous.

 Flying planes is dangerous.

- **Semantic ambiguity** - when a word has more than one possible meaning (or sense):

 John killed the wolf.

 John killed the project.

 John killed that bottle of wine.

 John killed Jane. (at tennis, or murdered her)
Example of NLP difficulties 4/4

- **Ambiguities of a sentence:**

Example:

I made her duck.

Possible interpretations:

1. I cooked waterfowl for her.
2. I cooked waterfowl belonging to her.
3. I created the (plaster ?) duck she owns.
4. I caused her to quickly lower her head or body.
5. I wave my magic wand and turned her into undifferentiated waterfowl.
NLP Pipeline

- Document Preprocessing
- Text Segmentation
- Part-of-speech Tagging
- Concept Extraction
- Word Sense Disambiguation
- Syntactic Parsing
- Semantic Parsing
- Coreference Resolution
- Machine Learning
- Feature Extraction
- Train
- Predict
- RDF Representation
From text to semantic triples

John went to the shop to buy flowers.

Logic Form + Semantic Relations
John_NN(x1) & _human_NE(x1) & go_VB(e1) & shop_NN(x2) & buy_VB(e2) & flower_NN(x3) & AGT_SR(x1,e1) & LOC_SR(x2,e1) & AGT_SR(x1,e2) & PRP_SR(e2,e1) & THM_SR(x3,e2)

Semantic Graph
Knowledge Graph QA

Input Documents → Document understanding → Knowledge extraction → Question processing

Ontology

Semantics to RDF → RDF triple store

Semantics to SPARQL

Questions

Answers
Computational Aspects of NLP

- Language processing is **symbolic**
 - words, concepts, events, actions, ideas
- Language processing is **discrete**
- Language processing is **module sequential**
 - tokenizer, POS, syntactic parser, NER, semantic parser, coreference
- Language processing is **compositional**
 - letters, words, phrases, sentences, paragraphs, documents
- Language processing is **sparse**
 - infinite possible combination of words, yet only some appear in text
State of the art in NLP Research 1/2

- **NL Publications**
 - ACL, NAACL, EACL
 - Conferences
 - Journals
 - AAAI - every year proceedings.
 - IJCAI - every second year proceedings.
 - SemEval

- **Natural Language Engineering** (journal).

- **Information Retrieval/Extraction**
State of the art in NLP Research 2/2

- **Machine Readable Dictionaries (MRD)**: WordNet, LDOCE.

- **Large corpora**:
 - Penn Treebank—contains 2-3 months of Wall Street Journal articles (~0.5 million words of English, POS tagged and parsed),
 - Brown corpus,
 - SemCor.
NLP Resources

- WordNet
- Extended WordNet (XWN)
- FrameNet
- POS Tagger
- Syntactic Parse
- Treebank
- SemCor
- Stanford Core NLP
- SQuAD (Stanford QA data set)
- Deep Learning software packages

http://www.hlt.utdallas.edu/~moldovan/CS6320.20/resources.html
WordNet 1/7

- A lexical database for the English language
- Developed by the Cognitive Science Laboratory at Princeton University (professor George A. Miller)
- Its design was inspired by current psycholinguistic theories of human lexical memory
- User friendly interface
- Library of C functions: allows you to access the synsets and the relations between them directly from your programs
Parts of speech covered by WordNet:
- Nouns
- Verbs
- Adjectives
- Adverbs

The fundamental unit of WordNet is the SYNSET (synonym set)
- each synset represents one underlying lexical concept

Different relations link the synonym sets
WordNet 3.0 (latest release)

A synset example:
(car, auto, automobile, machine, motorcar)

“Car” has 5 senses in WN.

Each synset has at least one definition and there could be some sentences using the words of the synset.

For the previous synset, we have:
- Definition: 4-wheeled motor vehicle; usually propelled by an internal combustion engine.
- Sentence: “He needs a car to go to work.”
WordNet 4/7

- Relations between synsets:
 - Synonymy
 - Hypernymy (superordination)
 - Hyponymy (subordination)
 - Holonymy (whole to part relation)
 - Meronymy (part to whole relation)
 - Antonymy
 - Troponymy (particular way to do something)
Synonymy relation:
- (motor vehicle, automotive vehicle)
- Definition: a self propelled wheeled vehicle that does not run on rails.

Hypernymy relation:
- (vehicle)
- Definition: a conveyance that transports people or objects.

Hyponymy relation:
- (ambulance)
- Definition: a vehicle that takes people to and from hospitals.
WordNet 6/7

- **Holonymy relation:**
 - (bicycle wheel)
 - Definition: the wheel of a bicycle
 - Has the holonym:
 - (bicycle, bike, wheel)
 - Definition: has two wheels; moved by foot pedals

- **Meronymy relation:**
 - (bicycle wheel)
 - Definition: the wheel of a bicycle
 - Has the meronym:
 - (spoke, radius)
 - Definition: a radial member of a wheel joining the hub to the rim.
Antonymy relation:
- (sweet)
- Definition: having a pleasant taste (as of sugar)
- Has the antonym:
 - (sour)
 - Definition: having a sharp biting taste.

Troponymy relation:
- (dream)
- Definition: experience while sleeping.
- Has the troponym:
 - (fantasize)
 - Definition: have fantasies.
eXtended WordNet 1/4

- Provides several important enhancements (over WordNet 2.0) intended to remedy the present limitations of WordNet.
- WordNet 2.0 glosses are syntactically parsed, transformed into logic forms and content words are semantically disambiguated.
- eXtended WordNet is an ongoing project at the Human Language Technology Research Institute (http://www.hlt.utdallas.edu), The University of Texas at Dallas.
- Second release - the next release scheduled for the end of 2004.
eXtended WordNet 2/4

For each WordNet 2.0 gloss, eXtended WordNet associates three types of information:
- its parse tree
- its logic form
- each noun, verb, adjective and adverb of the gloss is semantically disambiguated (with respect to WordNet 2.0)

- Exploits the rich information contained in the definitional glosses
- Increases the connectivity between synsets
- Provides computer access to a broader context for each concept
eXtended WordNet 3/4

- Consists of four XML files—one for each part of speech:
 - Noun
 - Verb
 - Adjective
 - Adverb

- The eXtended WordNet may be used as a Core Knowledge Base for applications such as:
 - Question Answering
 - Information Retrieval
 - Information Extraction
 - Summarization
 - Natural Language Generation
 - Inferences
 - other knowledge intensive applications
The glosses contain a part of the world knowledge since they define the most common concepts of the English language.
Frames and Understanding

Hypothesis: People understand things by performing mental operations on what they already know. Such knowledge is describable in terms of information packets called frames.
FrameNet 2/7

The core work of FrameNet

- Characterized frames
- Find words that fit the frames
- Develop descriptive terminology
- Extract sample sentences
- Annotate selected examples
- Derive “valence” descriptions
Sample Event Frame:

Commercial Transaction

Initial state:
Vendor has Goods, wants Money
Customer wants Goods, has Money

Transition:
Vendor transmits Goods to Customer
Customer transmits Money to Vendor

Final State:
Vendor has Money
Customer has Goods
Meaning and Syntax

- The various verbs that evoke this frame introduce the elements of the frame in different ways.
 - The identities of the buyer, seller, goods and money
- Information expressed in sentences containing these verbs occurs in different places in the sentence depending on the verb.
FrameNet 5/7

She bought some carrots from the greengrocer for a dollar.

She paid a dollar to the greengrocer for some carrots.

She paid the greengrocer a dollar for the carrots.
FrameNet Product

- For every target word,
- describe the *frames* or conceptual structures which underlie them,
- and annotate example sentences that cover the ways in which information from the associated frames are expressed in these sentences
FrameNet Entities and Relations

- Frames
 - Background
 - Lexical
- Frame Elements (Roles)
- Binding Constraints
 - Identify
- ISA (x:Frame, y:Frame)
- SubframeOf (x:Frame, y:Frame)
- Subframe Ordering
 - precedes
- Annotation
TreeBank web page:

- Treebank = a *bank* of linguistic *trees*
- Large corpus of syntactic and semantic annotated texts
- Penn Treebank Project has been developed at University of Pennsylvania
- POS (Part Of Speech) tagged
- Parsed trees
- Corpora:
 - Wall Street Journal
 - The Brown Corpus
 - Switchboard
 - ATIS
An example of POS tagged text:

[Mr./NP Volk/NP]
,
,
[55/CD years/NNS]
old/JJ ,/, succeeds/VBZ
[Duncan/NP Dwight/NP]
,
,
[who/WP]
retired/VBD in/IN
[September/NP]
./.
The parse tree for previous text:

```
((S
  (NP (NP Mr. Volk)
    ,
    (ADJP (NP 55 years) old)
    ,)
  (VP succeeds
    (NP (NP Duncan Dwight)
      ,
      (SBAR
        (WHNP who)
        (S (NP T)
          (VP retired
            (PP in
              (NP September))))))))) .))
```
This information is very useful for learning algorithms
The hand tagged text is a good source of correct examples for training the algorithms
The parsing algorithms use TreeBank for training and measuring their accuracy
Brill's tagger was trained on TreeBank
Charniak's parser was trained on TreeBank
Statistical purposes
POS Tagger

- The most popular Part-Of-Speech tagger is Brill's tagger
- Implements a simple rule based tagger using transformation-based learning
- INPUT: tokenized text -> OUTPUT: POS tagged text (each word gets attached its POS)
- Accuracy in the upper 90s percents
- Can be trained on your own corpus
- Can be augmented with new rules, making possible its tuning for a certain domain
- Has been used in eXtended WordNet development (an enhanced version)
- State-of-the-art POS tagger
POS Tagger (example)

INPUT: I saw the boy in the park with the telescope.
OUTPUT: I/PRP saw/VBD the/DT boy/NN in/IN the/DT park/NN with/IN the/DT telescope/NN ./.
The most popular syntactic parser in NLP community is Charniak's parser

A maximum-entropy-inspired parser

INPUT: plain text -> OUTPUT: parse trees (each sentence gets its parse tree)

Accuracy around 90%

Has been trained on TreeBank

Has been used in eXtended WordNet development

State-of-the-art syntactic parser
Syntactic Parser (example)

INPUT:
<s> I saw the boy in the park with the telescope . </s>

OUTPUT:
(S1 (S (NP (PRP I))
 (VP (VBD saw)
 (NP (DT the) (NN boy))
 (PP (IN in)
 (NP (NP (DT the) (NN park))
 (PP (IN with)
 (NP (DT the) (NN telescope)))))
))
)
SemCor

- Developed by Miller in 1993.
- Contains 37176 sentences from 352 newspaper articles on different topics.
- A corpus tagged with WordNet senses.
- An XML-like format: for each word has attached its POS, its lemma and its WordNet sense.
- The different versions of SemCor depend on the WordNet version used for the senses.
SemCor

- Word Sense Disambiguation (WSD).
- Learning algorithms for WSD could use this corpus as a training text.
- Projects that need data annotated with WordNet senses may use this corpus.