Machine Learning for Entity Coreference Resolution: A Retrospective Look at Two Decades of Research

Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
AAAI 2017
Entity Coreference

Identify the noun phrases (or entity mentions) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King...
Entity Coreference

Identify the noun phrases (or entity mentions) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King...
Entity Coreference

Identify the noun phrases (or *entity mentions*) that refer to the same real-world entity

Queen Elizabeth set about transforming her *husband*, *King George VI*, into a viable monarch. A renowned speech therapist was summoned to help *the King*...
Entity Coreference

Identify the noun phrases (or *entity mentions*) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a **viable monarch**. A renowned **speech therapist** was summoned to help the King...
Entity Coreference

Identify the noun phrases (or entity mentions) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King...

- Two coreferent mentions form a coreference relation
 - (Queen Elizabeth, her)
Entity Coreference

Identify the noun phrases (or entity mentions) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King...

- Some coreference relations are easier to identify than others
 - (King George VI, the King)

antecedent anaphor
Entity Coreference

Identify the noun phrases (or entity mentions) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King...

- Some coreference relations are easier to identify than others
 - (husband, the King)
Entity Coreference

Identify the noun phrases (or entity mentions) that refer to the same real-world entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King...

• Inherently a clustering task
 • the coreference relation is transitive
 • Coref(A,B) ∧ Coref(B,C) → Coref(A,C)
How hard is coreference? (Winograd, 1972)

The city council refused to give the women a permit because they feared violence.

The city council refused to give the women a permit because they advocated violence.
How hard is coreference? (Winograd, 1972)

The city council refused to give the women a permit because they feared violence.

The city council refused to give the women a permit because they advocated violence.

- This pronoun resolution task is known as the Winograd Schema Challenge
 - Lots of interest in the commonsense reasoning community
 - Easy for humans but challenging for machines
 - An appealing alternative to the Turing Test (Levesque, 2011)
Entity Coreference Resolution

- One of the most difficult tasks in NLP
 - reliance on sophisticated knowledge and inference mechanisms
 - Best English coreference resolver: ~0.65 F-measure

- Core task in information extraction from text
 - Consolidate textual information about an entity
 - Crucial for high-level NLP applications
 - E.g., question answering, machine translation, summarization

- State-of-the-art models employ supervised machine learning
Plan for the talk

- Models
- Features
- Challenges
Plan for the talk

- Models
- Features
- Challenges
The Mention-Pair Model

- a classifier that, given a description of two mentions, determines whether they are coreferent or not
 - coreference as a pairwise classification task
The Mention-Pair Model

- a classifier that, given a description of two mentions, determines whether they are coreferent or not
 - coreference as a pairwise classification task
 - But making pairwise classifications doesn’t guarantee transitivity!
The Mention-Pair Model

- a classifier that, given a description of two mentions, determines whether they are coreferent or not
 - coreference as a pairwise classification task
 - But making pairwise classifications doesn’t guarantee transitivity!

- **Solution**: postprocess conflicting decisions using clustering
 - Closest-first: resolve anaphor to closest antecedent
 - Best-first: resolve anaphor to most probable antecedent
Weaknesses of the Mention-Pair Model

- Can’t determine which candidate antecedent is the best

 John is angry about Jim because he…

- only determine how good a candidate antecedent is relative to “he”, not how good it is relative to the other candidates
Weaknesses of the Mention-Pair Model

- Can’t determine which candidate antecedent is the best

 John is angry about him because he…

 - only determine how good a candidate antecedent is relative to “he”, not how good it is relative to the other candidates

- Solution: formulate coreference as ranking, not classification

 - train a ranker that ranks candidate antecedents so that it assigns the highest rank to the correct antecedent

 → mention-ranking model
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision

```
Mr. Clinton  Clinton  she
Head word match
```
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision

Proximity and lack of grammatical incompatibility
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision

```
Mr. Clinton ----------- Clinton ----------- she
                       ?
```
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision

```
Mr. Clinton  Clinton  she
```

?
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - Information extracted from two mentions may not be sufficient for making an informed coreference decision.

![Diagram showing relationships between Mr. Clinton, Clinton, and she.]

?
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision

- **Idea**: train a classifier to determine whether she is coreferent with a preceding cluster
Weaknesses of the Mention-Pair Model

- **Limited expressiveness**
 - information extracted from two mentions may not be sufficient for making an informed coreference decision

- **Idea**: train a classifier to determine whether she is coreferent with a preceding cluster

 → **Entity-mention model**
 - More expressive than mention-pair model
 - can employ features over any subset of mentions in the cluster
Entity-Mention Model

Idea:

- Construct coreference clusters incrementally when processing the mentions in the text in a left-to-right manner.
- Later coreference decisions can exploit the partial clusters formed thus far.
Entity-Mention Model

- **Idea:**
 - Construct coreference clusters *incrementally* when we process the mentions from left to right in the text
 - Later coreference decisions can *exploit the partial clusters* formed thus far

- **Strength:** improved expressiveness

- **Weakness:** error propagation
 - Partial clusters formed thus far can be *wrong*
 - We may be building on the wrong solution
Easy-First Approaches

- Rather than resolving the mentions in a left-to-right manner,
 - resolve the **easy** mentions first: more likely to be correct
 - Exploit partial clusters to make later coreference decisions
 - Exploit easy relations to discover hard relations
Easy-First Approaches

- Rather than resolving the mentions in a left-to-right manner,
 - resolve the easy ones first: more likely to be correct
 - Exploit partial clusters to make later coreference decisions
 - Exploit easy relations to discover hard relations

- Stanford resolver (winner of the CoNLL 2011 shared task)
 - Rule-based resolver organized as a pipeline of sieves

Sieve 1 → Sieve 2 → Sieve 3 → Sieve 4 → Sieve 5
Easy-First Approaches

- Rather than resolving the mentions in a left-to-right manner,
 - resolve the easy ones first: more likely to be correct
 - Exploit partial clusters to make later coreference decisions
 - Exploit easy relations to discover hard relation

- Stanford resolver (winner of the CoNLL 2011 shared task)
 - Rule-based resolver organized as a pipeline of sieves

 Sieve 1 → Sieve 2 → Sieve 3 → Sieve 4 → Sieve 5

 - Each sieve uses rules to resolve a subset of the mentions
 - First sieve: resolves the easiest cases (e.g., string match, …)
 - Last sieve: resolves the hardest cases (pronouns)
Graph-Partitioning Approaches

- Not surprising
 - coreference is inherently a clustering task

- **Nodes**: mentions
- **Edges**: how likely the two mentions involved are coreferent

- Apply graph-partitioning algorithm to obtain coref clusters
 - Minimum cut, spectral clustering, correlation clustering, …
Recent Trend in Coreference Research

- Learn **structured** models for coreference resolution
 - **Input**: document
 - **Output**: a structure from which we can derive a partition
Partition-Based Models

- McCallum & Wellner (2004):
 - Since the goal is to output a coreference partition, why not learn to predict a partition directly?
Partition-Based Models

- McCallum & Wellner (2004):
 - Since the goal is to output a coreference partition, why not learn to predict a partition directly?

- Learn a conditional random field to induce a distribution over coreference partitions
 - each training example corresponds to a document
 - two types of features
 - Features defined over each mention
 - Features defined over each pair of mentions
 - learn feature weights using a structured perceptron learner
 - decode using correlation clustering
Tree-Based Models

- **Motivation**: learning a partition is hard: need to learn from all coreferent pairs, including both the easy and hard ones
- **Observation** (Fernandes et al., 2012):
 - We **don’t** need all coreferent pairs to construct a partition
 - To construct a partition, we need to construct each cluster
 - To construct a cluster with n mentions, we need only $n-1$ links
 - What we can learn instead is a maximum spanning tree
Coreference Tree

Root

Queen Elizabeth her

husband

King George VI

the King his

a viable monarch

a renowned speech therapist

speech impediment
Tree-Based Models

- Fernandes et al. (2012) claim that it is easier to learn a coreference tree than a coreference partition
 - may be able to avoid learning from the hard relations
 - winner of the CoNLL-2012 shared task
Neural Models (Wiseman et al., 2015, 2016)

- **Observation**: models developed by far are linear models

- Improve by learning non-linear models using neural nets
 - combine features in a non-linear fashion
 - learn useful task-specific representations

- Wiseman et al. (2015):
 - learn a mention-ranking model using a neural net

- Wiseman et al. (2016):
 - extend the neural model to exploit cluster information
 - achieve the best English result to date on OntoNotes
 - most promising approach to entity coreference
Plan for the talk

- Models
- Features
- Challenges
Features

- Early coreference models relied primarily on **lexical** and **syntactic** features.

- Recently, the use of **semantics** and **world knowledge** for coreference resolution was made possible by:
 - the development of large lexical knowledge bases
 - advances in corpus-based lexical semantics research
Semantic Class Agreement

- whether two mentions have the same semantic class
 - Cannot be coreferent if they don’t
 - Barack Obama (PERSON) vs. country (LOCATION)

Soon et al. (2001)
Semantic Relations

- Two common nouns are more likely to be coreferent if they have certain semantic relations (e.g., *synonymy*, *hyponymy*)

Bengtson & Roth (2008)
Semantic Similarity

- Two words/phrases are more likely to be coreferent if they are semantically similar
 - e.g., if their WordNet distance is small

Ponzetto & Strube (2006)
Selectional Preferences

Companies set aside tax money because the government is going to collect it

Dagan & Itai (1990), Kehler et al. (2004), Yang et al. (2005)
Selectional Preferences

Companies set aside tax money because the government is going to collect it.

- it cannot refer to “government” or “companies” because one cannot collect “government” or “companies”

- A verb has preferences/restrictions for certain arguments
 - Can exploit such preferences for selecting antecedents

Dagan & Itai (1990), Kehler et al. (2004), Yang et al. (2005)
World Knowledge

- Knowing that Donald Trump is U.S. president can help establish the coreference relation between two mentions “Donald Trump” and “president” in a document.

- Knowledge attributes of a proper name can be extracted from knowledge bases such as Wikipedia and Freebase.

Rahman & Ng (2011), Ratinov & Roth (2012), Hajishirzi et al. (2013)
Semantic Features

- Hard to draw general conclusions about the usefulness of different kinds of semantic features given that different researchers evaluated them under different conditions.

- Performance gains beyond the current state of the art will likely come from the incorporation of sophisticated features.
Plan for the talk

- Models
- Features
- Challenges
Challenges: New Models

- Can we jointly learn coreference resolution with other tasks?
 - Can exploit cross-task constraints to improve model learning
 - Jointly learn coreference with named entity recognition and entity linking with promising results (Durrett & Klein, 2014)
Challenges: New Features

- There is a limit on how far one can improve coreference resolution using machine learning methods
 - A good model can profitably exploit the available features, but if the knowledge needed is not present in the data, there isn’t much that the model can do
Challenges: New Languages

- **Low-resource languages**
 - Lexical knowledge bases may not be available
 - How can we obtain world knowledge?
 - Coreference-annotated corpora may not be available
 - How can we learn a coreference model?