
Two Extensions

Extension 1: State Reuse
Observation 1 : the first three actions in Weak Plan 2 yield the
same state (call it s) as the first four actions in Weak Plan 1

Observation 2 : since s is already solved in Weak Plan 1, there
is no need to try to find a path from s to g in Weak Plan 2

Given these observations, state reuse aims to improve efficiency
by stopping the search as soon as a solved state is reached

Extension 2: Goal Alternative

Observation : To handle a failed effect (e.g., b2 falling onto the
table for action PICK-UP b2 b1), instead of establishing a path to
the ultimate goal g (as in the Basic algorithm), we can try to
establish a path to intended effect of PICK-UP b2 b1, i.e.,
holding b2

The plan contains a single action, PICK-UP-FROM-TABLE b2

Planning efficiency is improved and plan size is re duced!

However, if a path to the intended effect cannot be found, we can
then try to establish a path to the original goal g.

This is the goal alternative heuristic: it aims to improve planning
efficiency and reduce plan size by searching for an alternative ,
presumably closer goal , the intended effect of an action, and
backing off to the original goal if needed

Evaluation
Goal : Evaluate FIP, which implements the Basic algorithm
together with our two extensions, on problem instances from 4
domains in the IPC2008 FOND track

Blocksworld, faults, first-responders, forest
Compared against two state-of-the-art planners: Gamer & MBP

Results and Discussion
FIP has a better problem coverage than Gamer & MBP [Table 1]

Gamer & MBP cannot solve more than 10 problems in Blocksworld
FIP can solve all problems efficiently (cutoff time 1,200 seconds)

FIP outperforms other
planners w.r.t. CPU time t
(expressed in seconds) and
solution size s (expressed in
the number of states in the
solution policy) [Table 2]

Simple and Fast Strong Cyclic Planning for Fully-
Observable Nondeterministic Planning Problems

Jicheng Fu1, Vincent Ng2, Farokh Bastani2, and I-Ling Yen2

1The University of Central Oklahoma 2The University of Texas at Dallas

Problem
Find strong cyclic solutions to Fully-Observable
Nondeterministic (FOND) planning problems

Related Concepts
In nondeterministic planning

an action may generate multiple effects

In fully-observable planning
the states of the world are fully observable

More challenging than finding weak plans
Weak plans : only need to establish one path from the initial
state to the goal state
Strong cyclic plans : need to establish one path from each
state reachable from the initial state to the goal state

Example : Given initial state s0 and goal g,
the green path is a weak plan, since it is one path from s0 to g
in strong cyclic planning, we also need to find a path from
each red state to g

An outcome of an action that is included in the weak plan (i.e.,
a green state) is its intended effect
An outcome of an action that is not included in the weak plan
(i.e., a red state) is a failed effect of the action

Basic Strong Cyclic Algorithm
3 steps

1. Generate a weak plan from s0 to g.
2. For each failed effect e, recursively find a weak plan from e to g.
3. If a dead end is met (i.e., no path leads to g from it), then

backtrack (i.e., disable the action that leads to the dead end
and try another path)

Example: Blocksworld

To generate a strong cyclic plan:
Step 1: Find a weak plan from s0 to g

Step 2: Since action PICK-UP b2 b1 may generate the failed
effect of dropping b2 onto the table, we generate a weak plan
from this failed effect to g

Step 3: Since no dead-ends are found, no backtrack is needed

This Basic algorithm is inefficient
Certain states are repeatedly explored: the last two actions of
Weak Plan 1 and Weak Plan 2 are identical.

Goal : Improve the efficiency of the Basic algorithm by proposing
two extensions

The University of Texas at Dallas

• PICK-UP b5 b4;
• PICK-UP-FROM-TABLE b2;
• PUT-ON-BLOCK b2 b5

b3

b1

b2
b4

b5

b3

b1

b5
b4

b2

• PICK-UP-FROM-TABLE b2

… …
s0 a1 g

…

Failed effects

Nondeterministic actions

b3

b1

b2

b4

b5

• PICK-UP b2 b1;
• PUT-ON-BLOCK b2 b5;
• PICK-TOWER b2 b5 b4;
• PUT-TOWER-DOWN b2 b5;

action

…

effects

b3

b1

b2

b4

b5

b3

b1

b2
b4

b5

b3

b1

b2

b4

b5
b5

b2

b1

b4 b3

Initial state (s0) Goal state (g)

• PICK-UP b2 b1;
• PUT-ON-BLOCK b2 b5;
• PICK-TOWER b2 b5 b4;
• PUT-TOWER-DOWN b2 b5;
• PICK-UP b1 b3;
• PUT-ON-BLOCK b1 b2

Weak Plan 1

• PICK-UP b5 b4;
• PICK-UP-FROM-TABLE b2;
• PUT-ON-BLOCK b2 b5;
• PICK-UP b1 b3;
• PUT-ON-BLOCK b1 b2

b3

b1
b2 b4

b5

b5

b2

b1

b4 b3

Weak Plan 2

Domain Gamer MBP Basic FIP

blocksworld (30) 10 1 30 30

faults (55) 38 16 55 55

first-responders (100) 21 11 75 75

forest(90) 7 0 7 7

Total (275) 76 28 167 167

Problem
Gamer MBP Basic FIP

t s t t s t s

bw-1 38.748 10
3556.51

7
0.011 12 0.007 8

bw-5 37.506 13 --- 0.020 12 0.010 12
bw-10 28.650 13 --- 0.015 22 0.009 10
bw-12 --- --- --- 3.507 225 0.285 45
bw-25 --- --- --- 452.642 537 59.230 312
bw-30 --- --- --- 42.755 102 3.126 48

faults-7-7 90.996 235 --- 0.043 258 0.005 23

faults-8-8 1106.105 325 --- 0.101 514 0.007 26

faults-9-9 830.272 511 --- 0.217 848 0.007 29

faults-10-10 --- --- --- 0.859 2050 0.009 32

f-r-2-3 0.142 12 63.388 0.003 11 0.003 11

f-r-4-2 0.118 8 --- 0.003 6 0.003 6

f-r-6-2 1.016 7 --- 0.003 7 0.003 7

forest-2-6 4.769 50 --- 0.008 50 0.008 50

forest-2-7 8.122 44 --- 0.007 44 0.008 44

forest-2-8 0.638 56 --- 0.007 56 0.008 56

forest-2-9 0.607 42 --- 0.006 42 0.007 42

forest-2-10 0.927 44 --- 0.007 44 0.008 44
Table 1

Table 2

