Lightly Supervised Modeling of Argument Persuasiveness

Isaac Persing and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Argumentation Mining

- Traditionally concerned with determining the argumentative structure of a text document
 - identifying its claims and premises and the relationships between them

- Recently expanded to tasks concerning the persuasiveness of arguments
 - **Focus**: how persuasive is your argument?
Example Argument [http://idebate.org]

Motion

This House would ban teachers from interacting with students via social networking websites.

Assertion

Acting as a warning signal for children at risk.

Justification

If a child is aware that private electronic contact between teachers and students is prohibited by law, the child will know the teacher is doing something he is not supposed to if he initiates private electronic contact.
Example Argument [http://idebate.org]

Motion: expresses a stance on the debate’s topic

This House would ban teachers from interacting with students via social networking websites.

Assertion

Acting as a warning signal for children at risk.

Justification

If a child is aware that private electronic contact between teachers and students is prohibited by law, the child will know the teacher is doing something he is not supposed to if he initiates private electronic contact.
Example Argument [http://idebate.org]

Motion
This House would ban teachers from interacting with students via social networking websites.

Assertion
Acting as a warning signal for children at risk.

Justification
If a child is aware that private electronic contact between teachers and students is prohibited by law, the child will know the teacher is doing something he is not supposed to if he initiates private electronic contact.
Example Argument [http://idebate.org]

Motion
This House would ban teachers from interacting with students via social networking websites.

Assertion: expresses why author agrees or disagrees with motion
Acting as a warning signal for children at risk.

Justification
If a child is aware that private electronic contact between teachers and students is prohibited by law, the child will know the teacher is doing something he is not supposed to if he initiates private electronic contact.
Example Argument [http://idebate.org]

Motion
This House would ban teachers from interacting with students via social networking websites.

Assertion
Acting as a warning signal for children at risk.

Justification: explains why author believes her assertion
If a child is aware that private electronic contact between teachers and students is prohibited by law, the child will know the teacher is doing something he is not supposed to if he initiates private electronic contact.
Example Argument [http://idebate.org]

Motion
This House would ban teachers from interacting with students via social networking websites.

Assertion
Acting as a warning signal for children at risk.

Justification: explains why author believes her assertion
If a child is aware that private electronic contact between teachers and students is prohibited by law, the child will know the teacher is doing something he is not supposed to if he initiates private electronic contact.

Humans can easily determine this argument is not very persuasive
Scoring Argument Persuasiveness

- Researchers have begun work on automatically scoring an argument’s persuasiveness (low score \rightarrow not persuasive)

- Why bother?
 - could help author understand how persuasive her argument is
 - in persuasive student essays
 - in online debates
Scoring Argument Persuasiveness

- Typical approach: supervised, feature-rich
 - works when labeled training data is abundant
 - Unfortunately, hand-labeling arguments with persuasiveness scores is time-consuming and labor-intensive

- Our goal
 - lightly-supervised approach to persuasiveness scoring
 - Significantly reduce reliance on labeled training data
Plan for the Talk

- Corpus and annotation
- Lightly-supervised approach
- Evaluation
Plan for the Talk

- Corpus and annotation
- Lightly-supervised approach
- Evaluation
Corpus and Annotation

- **Corpus**
 - debates from International Debate Education Association website
 - cover a wide range of topics (politics, economics, science, …)
 - 1208 arguments randomly selected from 165 debates

- **Annotation**
 - two native English speakers annotated each argument with its persuasiveness score
Rubric for Scoring Persuasiveness

6: a very persuasive argument
5: a persuasive, or only pretty clear argument
4: a decent, or only fairly clear argument
3: a poor, or only most understandable argument
2: a very unpersuasive or very unclear argument
1: an unclear or missing argument
Distribution over Persuasiveness Scores

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>12%</td>
<td>20%</td>
<td>21%</td>
<td>20%</td>
<td>24%</td>
<td></td>
</tr>
</tbody>
</table>
Distribution over Persuasiveness Scores

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3%</td>
<td>12%</td>
<td>20%</td>
<td>21%</td>
<td>20%</td>
<td>24%</td>
<td></td>
</tr>
</tbody>
</table>
Plan for the Talk

- Corpus and annotation
- Lightly-supervised approach
- Evaluation
Lightly-Supervised Approach

- **Question**: How can we design an approach that can reduce reliance on labeled data?

- **Idea**: use a small number of features (only 5)
 - Each feature encodes a type of error that negatively impacts an argument’s persuasiveness
 - more errors \(\rightarrow\) lower persuasiveness score
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- **Grammar Error (GE)**
 - **Motivation**: grammar errors can interrupt the flow of discourse in an argument and reduce its coherence
 - 1 if argument is hard to understand because of grammar errors
 - 0 otherwise
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- Grammar Error (GE)
- Lack of Objectivity (LO)
 - **Motivation**: An argument is less persuasive if an author flatly states her personal opinions as evidence for her claim
 - 1 if it displays an inappropriate lack of objectivity
 - 0 otherwise
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- Grammar Error (GE)
- Lack of Objectivity (LO)
- Inadequate Support (IS)
 - Motivation: arguments with more support tend to be more persuasive
 - 2 if support is missing
 - 1 if support is inadequate
 - 0 if support is adequate
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- **Grammar Error (GE)**
- **Lack of Objectivity (LO)**
- **Inadequate Support (IS)**
 - **Motivation**: arguments with more support tend to be more persuasive
 - 2 if support is missing
 - 1 if support is inadequate
 - 0 if support is adequate

3 severity levels:
- The larger the number, the more severe the error is
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- Grammar Error (GE)
- Lack of Objectivity (LO)
- Inadequate Support (IS)
- Unclear Assertion (UA)
 - **Motivation**: failure to clearly state the assertion makes an argument less persuasive
 - 2 if assertion is incomprehensible w/o reading the justification
 - 1 if unclear how assertion is related to motion w/o justification
 - 0 if assertion is clear
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- Grammar Error (GE)
- Lack of Objectivity (LO)
- Inadequate Support (IS)
- Unclear Assertion (UA)
 - **Motivation**: failure to clearly state the assertion makes an argument less persuasive
 - 2 if assertion is incomprehensible w/o reading the justification
 - 1 if unclear how assertion is related to motion w/o justification
 - 0 if assertion is clear

3 severity levels
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- **Grammar Error (GE)**
- **Lack of Objectivity (LO)**
- **Inadequate Support (IS)**
- **Unclear Assertion (UA)**
- **Unclear Justification (UJ)**

 - **Motivation**: failure to state an argument’s justification for its assertion will make it less persuasive
 - 2 if justification appears unrelated to assertion
 - 1 if justification does not concisely justify the assertion
 - 0 if justification is clear
Five Errors Negatively Impacting Persuasiveness

- motivated by theoretical work on argument persuasiveness
- Grammar Error (GE)
- Lack of Objectivity (LO)
- Inadequate Support (IS)
- Unclear Assertion (UA)
- Unclear Justification (UJ)

 - **Motivation**: failure to state an argument’s justification for its assertion will make it less persuasive
 - 2 if justification appears unrelated to assertion
 - 1 if justification does not concisely justify the assertion
 - 0 if justification is clear

 3 severity levels
How to compute each error?

Bootstrapping

- **Step 1**: for each error, design *heuristics* that can reliably label (a small number of) arguments with error severity values
 - E.g., for Inadequate Support, label an argument with one of its possible values (0, 1, or 2)

- **Step 2**: Label the remaining arguments by bootstrapping from the seed arguments using EM
 - M-step: estimate the parameters of the generative model
 - E-step: (re)label each argument with the error probabilistically
Generative Model: Naïve Bayes

- 10 features
10 Features

- # grammar errors per sentence in justification
 - Useful for predicting grammar errors
10 Features

- **# grammar errors** per sentence in justification
- **# subjectivity indicators** ("morally", "certain") in justification
 - Arguments too concerned with the author’s morality or in which the author seems too certain of herself show a lack of objectivity
10 Features

- # grammar errors per sentence in justification
- # subjectivity indicators in justification
- # definite articles in justification
 - An argument with few definite articles is usually less specific and may also be too subjective
- # 1st person plural pronouns in justification: indicators of subjectivity
- # citations in justification: is support adequate?
- Assertion length: short assertions could be unclear
- Justification length: short justifications could be unclear
- # content lemmas only in justification: enough points/support?
- # content lemmas only in assertion: encodes relevance to justification
- # strong thesis statements in justification: makes justification clearer
- # subject matches in discourse relation
10 Features

- # grammar errors per sentence in justification
- # subjectivity indicators in justification
- # definite articles in justification
- # 1st person plural pronouns in justification
 - Justifications that lack objectivity often rely on stories about the author’s personal experiences
10 Features

- # grammar errors per sentence in justification
- # subjectivity indicators in justification
- # definite articles in justification
- # 1st person plural pronouns in justification
- # references cited in justification
 - More citations tend to imply more support for claims
10 Features

- # grammar errors per sentence in justification
- # subjectivity indicators in justification
- # definite articles in justification
- # 1st person plural pronouns in justification
- # references cited in justification
- Assertion length
 - short assertions could be unclear
- Justification length
 - short justifications could be unclear
10 Features

- # grammar errors per sentence in justification
- # subjectivity indicators in justification
- # definite articles in justification
- # 1st person plural pronouns in justification
- # citations in justification
- Assertion length
- Justification length
- # content lemmas in both assertion and justification
- # subject matches in contingency-cause discourse relation
So far...

- We have labeled each argument with the severity value of each of the five errors

- **Next**: Use these error severity values for scoring argument persuasiveness
Argument Persuasiveness Scoring

- Assumption
 - more errors \rightarrow lower persuasiveness score
Argument Persuasiveness Scoring

• Assumption
 • more errors \rightarrow lower persuasiveness score
 • the persuasiveness score of an argument inversely correlates with the sum of its five errors’ severity values
 • e.g.,

<table>
<thead>
<tr>
<th>Argument:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE=0</td>
</tr>
<tr>
<td>LO=0</td>
</tr>
<tr>
<td>IS=2</td>
</tr>
<tr>
<td>UA=2</td>
</tr>
<tr>
<td>UJ=0</td>
</tr>
</tbody>
</table>

Sum of severity values = 4
Argument Persuasiveness Scoring

- **Training a Persuasiveness Predictor**
 - Cluster the training arguments by the sum of severity values
 - For each cluster, randomly select n arguments and manually label each one with its persuasiveness score
 - Assign to each cluster the average of the n scores
Argument Persuasiveness Scoring

- **Training a Persuasiveness Predictor**
 - Cluster the training arguments by the sum of severity values
 - For each cluster, randomly select \(n \) arguments and manually label each one with its persuasiveness score
 - Assign to each cluster the average of the \(n \) scores

- **Testing:** For each test argument,
 - compute its sum of severity values
 - assign it to the corresponding cluster
 - predict its persuasiveness score as the cluster’s score
Plan for the Talk

- Corpus and annotation
- Lightly-supervised approach
- Evaluation
Evaluation: Goal

- Evaluate ASE, our lightly-supervised approach
Three Scoring Metrics

- **E (Zero-one Loss):**
 - frequency at which a system predicts the wrong score

- **ME (Mean Error):**
 - mean distance between the predicted score and the gold score

- **PC (Pearson’s Correlation Coefficient):**
 - Pearson’s correlation between the predicted and gold scores
Three Scoring Metrics

- **E (Zero-one Loss):**
 - frequency at which a system predicts the wrong score

- **ME (Mean Error):**
 - mean distance between the predicted score and the gold score

- **PC (Pearson’s Correlation Coefficient):**
 - Pearson’s correlation between the predicted and gold scores
Six Baseline Systems

- Linear SVM regressors trained on different feature sets
- Bag of words (BOW)
- Word n-grams (WNG)
 - unigrams, bigrams, trigrams
- Bag of part-of-speech tags (BOPoS)
- Style
 - length, word categories, word complexity, word scores
- Duplicated Tan et al. (2016)
 - features for predicting success of persuasion
- Persing and Ng (2015)
 - features developed for scoring essay persuasiveness
Evaluation: Setup

- 5-fold cross validation
Results

10% of training data
Results with Lightly-Supervised Baselines

- **BOW**: PC = 0.05
- **WNG**: PC = 0.05
- **BOPOS**: PC = 0.1
- **Style**: PC = 0.25
- **Tan**: PC = 0.25
- **P&N**: PC = 0.25
- **ASE**: PC = 0.45

Lack of Objectivity
Error Ablation

- Recall that ASE scores persuasiveness by summing the five errors’ severity values
- Ablate each of the five errors when scoring persuasiveness
Results: Error Ablation

- GE
- LO
- IS
- UA
- UJ
- All

PC
Results: Error Ablation

PC

GE LO IS UA UJ All
Results: Error Ablation
Results: Error Ablation
Lightly vs. Fully-Supervised ASE

- Train ASE with 100% of the training data
Results: Lightly vs. Fully Supervised ASE

![Bar chart showing the comparison between Lightly and Fully Supervised ASE with different percentages of training data.](chart.png)
Is ASE’s persuasiveness scoring method too simplistic?

- What if we train an SVM regressor using the five errors as features?
Results: ASE vs. SVM for Scoring
Is ASE’s assumption correct?

- ASE assumes that an argument with more errors is less persuasive

- How can we validate this assumption?
 1. cluster arguments by the sum of severity values
 2. average the gold persuasiveness scores of the arguments in each cluster
Results: Clustering

Average Persuasiveness Score

Sum of Severity Values

0 1 2 3 4 5 6
Summary

- Proposed a lightly-supervised approach to persuasiveness scoring that outperformed competing baselines
- Made our annotated corpus publicly available